Computing a (1+ε)-Approximate Geometric Minimum-Diameter Spanning Tree

被引:0
|
作者
Michael J. Spriggs
J. Mark Keil
Sergei Bespamyatnikh
Michael Segal
Jack Snoeyink
机构
[1] School of Computer Science,
[2] University of Waterloo,undefined
[3] 200 University Avenue West,undefined
[4] Waterloo,undefined
[5] Ontario,undefined
[6] N2L 3G1,undefined
[7] Department of Computer Science,undefined
[8] University of Saskatchewan,undefined
[9] Saskatoon,undefined
[10] Saskatchewan,undefined
[11] S7N 5A9,undefined
[12] Department of Computer Science,undefined
[13] Duke University,undefined
[14] Box 90129,undefined
[15] Durham,undefined
[16] NC 27708,undefined
[17] Communication Systems Engineering Department,undefined
[18] Ben-Gurion University of the Negev,undefined
[19] Beer-Sheva,undefined
[20] 84105,undefined
[21] Department of Computer Science,undefined
[22] University of North Carolina at Chapel Hill,undefined
[23] Chapel Hill,undefined
[24] NC 27599-3175,undefined
来源
Algorithmica | 2004年 / 38卷
关键词
Minimum diameter spanning tree; Approximation algorithm; Geometric graph;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of points in the plane, a geometric minimum-diameter spanning tree (GMDST) of P is a spanning tree of P such that the longest path through the tree is minimized. For several years, the best upper bound on the time to compute a GMDST was cubic with respect to the number of points in the input set. Recently, Timothy Chan introduced a subcubic time algorithm. In this paper we present an algorithm that generates a tree whose diameter is no more than (1 + ε) times that of a GMDST, for any ε > 0. Our algorithm reduces the problem to several grid-aligned versions of the problem and runs within time $O(ε-3+ n) and space O(n).
引用
收藏
页码:577 / 589
页数:12
相关论文
共 50 条
  • [31] The geometric generalized minimum spanning tree problem with grid clustering
    Feremans C.
    Grigoriev A.
    Sitters R.
    4OR, 2006, 4 (4) : 319 - 329
  • [32] Computing (1+∈)-Approximate Degeneracy in Sublinear Time
    King, Valerie
    Thomo, Alex
    Yong, Quinton
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2160 - 2168
  • [33] RANDOMIZATION HELPS COMPUTING A MINIMUM SPANNING TREE UNDER UNCERTAINTY
    Megow, Nicole
    Meissner, Julie
    Skutella, Martin
    SIAM JOURNAL ON COMPUTING, 2017, 46 (04) : 1217 - 1240
  • [34] Randomization Helps Computing a Minimum Spanning Tree under Uncertainty
    Megow, Nicole
    Meissner, Julie
    Skutella, Martin
    ALGORITHMS - ESA 2015, 2015, 9294 : 878 - 890
  • [35] Parameterized complexity of finding a spanning tree with minimum reload cost diameter
    Baste, Julien
    Gozupek, Didem
    Paul, Christophe
    Sau, Ignasi
    Shalom, Mordechai
    Thilikos, Dimitrios M.
    NETWORKS, 2020, 75 (03) : 259 - 277
  • [36] Approximate minimum spanning tree clustering in high-dimensional space
    Lai, Chih
    Rafa, Taras
    Nelson, Dwight E.
    INTELLIGENT DATA ANALYSIS, 2009, 13 (04) : 575 - 597
  • [37] Solving diameter constrained minimum spanning tree problems in dense graphs
    dos Santos, AC
    Lucena, A
    Ribeiro, CC
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, 2004, 3059 : 458 - 467
  • [38] Improved heuristics for the bounded-diameter minimum spanning tree problem
    Alok Singh
    Ashok K. Gupta
    Soft Computing, 2007, 11 : 911 - 921
  • [39] An adaptive heuristic to the bounded-diameter minimum spanning tree problem
    Javad Akbari Torkestani
    Soft Computing, 2012, 16 : 1977 - 1988
  • [40] Approximating the degree-bounded minimum diameter spanning tree problem
    Könemann, J
    Levin, A
    Sinha, A
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION, 2003, 2764 : 109 - 121