Computing (1+∈)-Approximate Degeneracy in Sublinear Time

被引:0
|
作者
King, Valerie [1 ]
Thomo, Alex [1 ]
Yong, Quinton [1 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of finding the degeneracy of a graph is a subproblem of the k-core decomposition problem. In this paper, we present a (1+is an element of)-approximate solution to the degeneracy problem which runs in O(n log n) time, sublinear in the input size for dense graphs, by sampling a small number of neighbors adjacent to high degree nodes. This improves upon the previous work on sublinear approximate degeneracy, which implies a (4 +is an element of)approximate (O) over tilde (n) solution. Our algorithm can be extended to an approximate O(n log n) time solution to the k-core decomposition problem. We also explore the use of our approximate algorithm as a technique for speeding up exact degeneracy computation. We prove theoretical guarantees of our algorithm and provide optimizations, which improve the running time of our algorithm in practice. Experiments on massive real-world web graphs show that our algorithm performs significantly faster than previous methods for computing degeneracy.
引用
收藏
页码:2160 / 2168
页数:9
相关论文
共 50 条
  • [1] Computing (1 + ϵ)-Approximate Degeneracy in Sublinear Time
    King, Valerie
    Thomo, Alex
    Yong, Quinton
    IJCAI International Joint Conference on Artificial Intelligence, 2023, 2023-August : 2160 - 2168
  • [2] Dynamic (1+ε)-Approximate Matching Size in Truly Sublinear Update Time
    Bhattacharya, Sayan
    Kiss, Peter
    Saranurak, Thatchaphol
    2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 1563 - 1588
  • [3] Sublinear time approximate clustering
    Mishra, N
    Oblinger, D
    Pitt, L
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 439 - 447
  • [4] Computing a (1+ε)-approximate geometric minimum-diameter spanning tree
    Spriggs, MJ
    Keil, JM
    Bespamyatnikh, S
    Segal, M
    Snoeyink, J
    ALGORITHMICA, 2004, 38 (04) : 577 - 589
  • [5] Computing a (1+ε)-Approximate Geometric Minimum-Diameter Spanning Tree
    Michael J. Spriggs
    J. Mark Keil
    Sergei Bespamyatnikh
    Michael Segal
    Jack Snoeyink
    Algorithmica , 2004, 38 : 577 - 589
  • [6] (1+ε)-approximate Sparse Recovery
    Price, Eric
    Woodruff, David P.
    2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 295 - 304
  • [7] On (1+ε)-Approximate Flow Sparsifiers
    Chen, Yu
    Tan, Zihan
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 1568 - 1605
  • [8] Separating sublinear time computations by approximate diameter
    Fu, Bin
    Zhao, Zhiyu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (04) : 393 - 416
  • [9] Separating sublinear time computations by approximate diameter
    Bin Fu
    Zhiyu Zhao
    Journal of Combinatorial Optimization, 2009, 18 : 393 - 416
  • [10] Computing String Covers in Sublinear Time
    Radoszewski, Jakub
    Zuba, Wiktor
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2024, 2025, 14899 : 272 - 288