Computing (1+∈)-Approximate Degeneracy in Sublinear Time

被引:0
|
作者
King, Valerie [1 ]
Thomo, Alex [1 ]
Yong, Quinton [1 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of finding the degeneracy of a graph is a subproblem of the k-core decomposition problem. In this paper, we present a (1+is an element of)-approximate solution to the degeneracy problem which runs in O(n log n) time, sublinear in the input size for dense graphs, by sampling a small number of neighbors adjacent to high degree nodes. This improves upon the previous work on sublinear approximate degeneracy, which implies a (4 +is an element of)approximate (O) over tilde (n) solution. Our algorithm can be extended to an approximate O(n log n) time solution to the k-core decomposition problem. We also explore the use of our approximate algorithm as a technique for speeding up exact degeneracy computation. We prove theoretical guarantees of our algorithm and provide optimizations, which improve the running time of our algorithm in practice. Experiments on massive real-world web graphs show that our algorithm performs significantly faster than previous methods for computing degeneracy.
引用
收藏
页码:2160 / 2168
页数:9
相关论文
共 50 条
  • [31] Sublinear approximate string matching and biological applications
    Chang, W.I.
    Lawler, E.L.
    Algorithmica (New York), 1994, 12 (4-5): : 327 - 344
  • [32] Sublinear Algorithms for (1.5+ε)-Approximate Matching
    Bhattacharya, Sayan
    Kiss, Peter
    Saranurak, Thatchaphol
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 254 - 266
  • [33] Approximate degeneracy of J=1 spatial correlators in high temperature QCD
    Rohrhofer, C.
    Aoki, Y.
    Cossu, G.
    Fukaya, H.
    Glozman, L. Ya.
    Hashimoto, S.
    Lang, C. B.
    Prelovsek, S.
    PHYSICAL REVIEW D, 2017, 96 (09)
  • [34] Computing the Degeneracy of Large Graphs
    Farach-Colton, Martin
    Tsai, Meng-Tsung
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 250 - 260
  • [35] On approximating metric 1-median in sublinear time
    Wu, Bang Ye
    INFORMATION PROCESSING LETTERS, 2014, 114 (04) : 163 - 166
  • [36] A (1+ε)-Approximate Algorithm for k-means Problem Based on Balancing Constraint
    Zhang Sheng
    Wang Shouqiang
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3307 - 3310
  • [37] SUBLINEAR TIME ALGORITHMS
    Rubinfeld, Ronitt
    Shapira, Asaf
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (04) : 1562 - 1588
  • [38] Approximate Computing
    不详
    IEEE NANOTECHNOLOGY MAGAZINE, 2022, 16 (01) : 2 - 6
  • [39] Approximate Computing
    Keszocze, Oliver
    IT-INFORMATION TECHNOLOGY, 2022, 64 (03): : 77 - 78
  • [40] Approximate Computing, Intelligent Computing
    Eeckhout, Lieven
    IEEE MICRO, 2018, 38 (04) : 6 - 7