Attention hierarchical network for super-resolution

被引:0
|
作者
Zhaoyang Song
Xiaoqiang Zhao
Yongyong Hui
Hongmei Jiang
机构
[1] Lanzhou University of Technology,College of Electrical Engineering and Information Engineering
[2] Key Laboratory of Gansu Advanced Control for Industrial Processes,National Experimental Teaching Center of Electrical and Control Engineering
[3] Lanzhou University of Technology,undefined
来源
关键词
Super-resolution; Deep neural network; Attention hierarchical network; High-frequency features;
D O I
暂无
中图分类号
学科分类号
摘要
Deep neural networks with attention mechanism for super-resolution (SR) have achieved good SR performance by focusing on the high-frequency components of images. However, during the SR process, it is difficult for these networks to obtain multi-level high-frequency features with different extraction difficulties from low-resolution images, resulting in the lack of textures and details in the reconstructed SR images. To solve this problem, we propose an attention hierarchical network (AHN) for SR. The proposed AHN separates and extracts high-frequency features with different extraction difficulties in a hierarchical way to obtain multi-level high-frequency features. In the process of separation and extraction, we separate high-frequency features into easy-to-extract features and difficult-to-extract features by attention block and extract the separated features by dense-residual module. Extensive experiments demonstrate that the proposed AHN is superior to the state-of-the-art SR methods and reconstructs better SR images that contain more textures and details.
引用
收藏
页码:46351 / 46369
页数:18
相关论文
共 50 条
  • [41] SRGAT: Single Image Super-Resolution With Graph Attention Network
    Yan, Yanyang
    Ren, Wenqi
    Hu, Xiaobin
    Li, Kun
    Shen, Haifeng
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4905 - 4918
  • [42] Information-Growth Attention Network for Image Super-Resolution
    Li, Zhuangzi
    Li, Ge
    Li, Thomas
    Liu, Shan
    Gao, Wei
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 544 - 552
  • [43] Lightweight image super-resolution with sliding Proxy Attention Network
    Hu, Zhenyu
    Sun, Wanjie
    Chen, Zhenzhong
    SIGNAL PROCESSING, 2025, 227
  • [44] Deep coordinate attention network for single image super-resolution
    Xie, Chao
    Zhu, Hongyu
    Fei, Yeqi
    IET IMAGE PROCESSING, 2022, 16 (01) : 273 - 284
  • [45] PYRAMID FUSION ATTENTION NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
    He, Hao
    Du, Zongcai
    Li, Wenfeng
    Tang, Jie
    Wu, Gangshan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2165 - 2169
  • [46] Omnidirectional image super-resolution via position attention network
    Wang, Xin
    Wang, Shiqi
    Li, Jinxing
    Li, Mu
    Li, Jinkai
    Xu, Yong
    NEURAL NETWORKS, 2024, 178
  • [47] Channel attention and residual concatenation network for image super-resolution
    Cai T.-J.
    Peng X.-Y.
    Shi Y.-P.
    Huang J.
    Peng, Xiao-Yu (pengxy96@qq.com), 1600, Chinese Academy of Sciences (29): : 142 - 151
  • [48] Component Attention Guided Face Super-Resolution Network: CAGFace
    Kalarot, Ratheesh
    Li, Tao
    Porikli, Fatih
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 359 - 369
  • [49] Multi-scale attention network for image super-resolution
    Wang, Li
    Shen, Jie
    Tang, E.
    Zheng, Shengnan
    Xu, Lizhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 80
  • [50] Fused pyramid attention network for single image super-resolution
    Chen, Shi
    Bi, Xiuping
    Zhang, Lefei
    IET IMAGE PROCESSING, 2023, 17 (06) : 1681 - 1693