Attention hierarchical network for super-resolution

被引:0
|
作者
Zhaoyang Song
Xiaoqiang Zhao
Yongyong Hui
Hongmei Jiang
机构
[1] Lanzhou University of Technology,College of Electrical Engineering and Information Engineering
[2] Key Laboratory of Gansu Advanced Control for Industrial Processes,National Experimental Teaching Center of Electrical and Control Engineering
[3] Lanzhou University of Technology,undefined
来源
关键词
Super-resolution; Deep neural network; Attention hierarchical network; High-frequency features;
D O I
暂无
中图分类号
学科分类号
摘要
Deep neural networks with attention mechanism for super-resolution (SR) have achieved good SR performance by focusing on the high-frequency components of images. However, during the SR process, it is difficult for these networks to obtain multi-level high-frequency features with different extraction difficulties from low-resolution images, resulting in the lack of textures and details in the reconstructed SR images. To solve this problem, we propose an attention hierarchical network (AHN) for SR. The proposed AHN separates and extracts high-frequency features with different extraction difficulties in a hierarchical way to obtain multi-level high-frequency features. In the process of separation and extraction, we separate high-frequency features into easy-to-extract features and difficult-to-extract features by attention block and extract the separated features by dense-residual module. Extensive experiments demonstrate that the proposed AHN is superior to the state-of-the-art SR methods and reconstructs better SR images that contain more textures and details.
引用
收藏
页码:46351 / 46369
页数:18
相关论文
共 50 条
  • [31] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241
  • [32] Densely convolutional attention network for image super-resolution
    Bai, Furui
    Lu, Wen
    Huang, Yuanfei
    Zha, Lin
    Yang, Jiachen
    NEUROCOMPUTING, 2019, 368 : 25 - 33
  • [33] Hybrid Domain Attention Network for Efficient Super-Resolution
    Zhang, Qian
    Feng, Linxia
    Liang, Hong
    Yang, Ying
    SYMMETRY-BASEL, 2022, 14 (04):
  • [34] IMAGE SUPER-RESOLUTION USING MULTI-RESOLUTION ATTENTION NETWORK
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1610 - 1614
  • [35] Cross-resolution feature attention network for image super-resolution
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    VISUAL COMPUTER, 2023, 39 (09): : 3837 - 3849
  • [36] Cross-resolution feature attention network for image super-resolution
    Anqi Liu
    Sumei Li
    Yongli Chang
    The Visual Computer, 2023, 39 : 3837 - 3849
  • [37] Hierarchical Feature Feedback Network for Depth Super-resolution Reconstruction
    Zhang, Shuai-Yong
    Liu, Mei-Qin
    Yao, Chao
    Lin, Chun-Yu
    Zhao, Yao
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (04): : 992 - 1003
  • [38] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [39] A novel fuzzy hierarchical fusion attention convolution neural network for medical image super-resolution reconstruction
    Wang, Changzhong
    Lv, Xiang
    Shao, Mingwen
    Qian, Yuhua
    Zhang, Yang
    INFORMATION SCIENCES, 2023, 622 : 424 - 436
  • [40] Lightweight image super-resolution with multiscale residual attention network
    Xiao, Cunjun
    Dong, Hui
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)