共 50 条
The paths embedding of the arrangement graphs with prescribed vertices in given position
被引:0
|作者:
Yuan-Hsiang Teng
Jimmy J. M. Tan
Chey-Woei Tsay
Lih-Hsing Hsu
机构:
[1] Hungkuang University,Department of Computer Science and Information Engineering
[2] National Chiao Tung University,Department of Computer Science
[3] Providence University,Department of Computer Science and Information Engineering
来源:
关键词:
Arrangement graph;
Panpositionable Hamiltonian;
Panconnected;
Interconnection network;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let n and k be positive integers with n−k≥2. The arrangement graph An,k is recognized as an attractive interconnection networks. Let x, y, and z be three different vertices of An,k. Let l be any integer with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$d_{A_{n,k}}(\mathbf{x},\mathbf{y}) \le l \le \frac{n!}{(n-k)!}-1-d_{A_{n,k}}(\mathbf{y},\mathbf{z})$\end{document}. We shall prove the following existance properties of Hamiltonian path: (1) for n−k≥3 or (n,k)=(3,1), there exists a Hamiltonian path R(x,y,z;l) from x to z such that dR(x,y,z;l)(x,y)=l; (2) for n−k=2 and n≥5, there exists a Hamiltonian path R(x,y,z;l) except for the case that x, y, and z are adjacent to each other.
引用
收藏
页码:627 / 646
页数:19
相关论文