The paths embedding of the arrangement graphs with prescribed vertices in given position

被引:0
|
作者
Yuan-Hsiang Teng
Jimmy J. M. Tan
Chey-Woei Tsay
Lih-Hsing Hsu
机构
[1] Hungkuang University,Department of Computer Science and Information Engineering
[2] National Chiao Tung University,Department of Computer Science
[3] Providence University,Department of Computer Science and Information Engineering
来源
关键词
Arrangement graph; Panpositionable Hamiltonian; Panconnected; Interconnection network;
D O I
暂无
中图分类号
学科分类号
摘要
Let n and k be positive integers with n−k≥2. The arrangement graph An,k is recognized as an attractive interconnection networks. Let x, y, and z be three different vertices of An,k. Let l be any integer with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{A_{n,k}}(\mathbf{x},\mathbf{y}) \le l \le \frac{n!}{(n-k)!}-1-d_{A_{n,k}}(\mathbf{y},\mathbf{z})$\end{document}. We shall prove the following existance properties of Hamiltonian path: (1) for n−k≥3 or (n,k)=(3,1), there exists a Hamiltonian path R(x,y,z;l) from x to z such that dR(x,y,z;l)(x,y)=l; (2) for n−k=2 and n≥5, there exists a Hamiltonian path R(x,y,z;l) except for the case that x, y, and z are adjacent to each other.
引用
收藏
页码:627 / 646
页数:19
相关论文
共 50 条
  • [41] Embedding cycles of given length in oriented graphs
    Kuehn, Daniela
    Osthus, Deryk
    Piguet, Diana
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 495 - 501
  • [42] On the largest matching roots of graphs with a given number of pendent vertices
    Zhang, Hailiang
    Chen, Guangting
    Yu, Guanglong
    DISCRETE APPLIED MATHEMATICS, 2019, 255 : 339 - 344
  • [43] The Minimal Kirchhoff Index of Graphs with a Given Number of Cut Vertices
    Xu, Kexiang
    Liu, Hongshuang
    Yang, Yujun
    Das, Kinkar Ch.
    FILOMAT, 2016, 30 (13) : 3451 - 3463
  • [44] Eulerian subgraphs containing given vertices and Hamiltonian line graphs
    Lai, HJ
    DISCRETE MATHEMATICS, 1998, 178 (1-3) : 93 - 107
  • [45] The Smallest Hosoya Index of Bicyclic Graphs with Given Pendent Vertices
    Lihua YOU
    Chaoxia WEI
    Zhifu YOU
    JournalofMathematicalResearchwithApplications, 2014, 34 (01) : 12 - 32
  • [46] Unicyclic graphs with given number of pendent vertices and minimal energy
    Hua, Hongbo
    Wang, Maolin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 478 - 489
  • [47] A method for enumerating pairwise compatibility graphs with a given number of vertices
    Azam, Naveed Ahmed
    Shurbevski, Aleksandar
    Nagamochi, Hiroshi
    DISCRETE APPLIED MATHEMATICS, 2021, 303 (303) : 171 - 185
  • [48] On unicyclic graphs with given number of pendent vertices and minimal energy
    Bhat, Mushtaq A.
    Pirzada, S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 597 : 86 - 93
  • [49] On the graphs with given diameter, number of vertices, and local diversity of balls
    Fedoryaeva T.I.
    Journal of Applied and Industrial Mathematics, 2011, 5 (1) : 44 - 50
  • [50] On the minimum Kirchhoff index of graphs with a given number of cut vertices
    Huang, Junlin
    Huang, Guixian
    Li, Jianping
    He, Weihua
    DISCRETE APPLIED MATHEMATICS, 2025, 365 : 27 - 38