The paths embedding of the arrangement graphs with prescribed vertices in given position

被引:0
|
作者
Yuan-Hsiang Teng
Jimmy J. M. Tan
Chey-Woei Tsay
Lih-Hsing Hsu
机构
[1] Hungkuang University,Department of Computer Science and Information Engineering
[2] National Chiao Tung University,Department of Computer Science
[3] Providence University,Department of Computer Science and Information Engineering
来源
关键词
Arrangement graph; Panpositionable Hamiltonian; Panconnected; Interconnection network;
D O I
暂无
中图分类号
学科分类号
摘要
Let n and k be positive integers with n−k≥2. The arrangement graph An,k is recognized as an attractive interconnection networks. Let x, y, and z be three different vertices of An,k. Let l be any integer with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{A_{n,k}}(\mathbf{x},\mathbf{y}) \le l \le \frac{n!}{(n-k)!}-1-d_{A_{n,k}}(\mathbf{y},\mathbf{z})$\end{document}. We shall prove the following existance properties of Hamiltonian path: (1) for n−k≥3 or (n,k)=(3,1), there exists a Hamiltonian path R(x,y,z;l) from x to z such that dR(x,y,z;l)(x,y)=l; (2) for n−k=2 and n≥5, there exists a Hamiltonian path R(x,y,z;l) except for the case that x, y, and z are adjacent to each other.
引用
收藏
页码:627 / 646
页数:19
相关论文
共 50 条
  • [21] Hosoya index of unicyclic graphs with prescribed pendent vertices
    Hua, Hongbo
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (02) : 831 - 844
  • [22] Hosoya index of unicyclic graphs with prescribed pendent vertices
    Hongbo Hua
    Journal of Mathematical Chemistry, 2008, 43 : 831 - 844
  • [23] CIRCUITS IN GRAPHS THROUGH A PRESCRIBED SET OF ORDERED VERTICES
    Coudert, David
    Giroire, Frederic
    Sau, Ignasi
    JOURNAL OF INTERCONNECTION NETWORKS, 2010, 11 (3-4) : 121 - 141
  • [24] The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
    Shang-wang Tan
    Qi-long Wang
    Yan Lin
    Journal of Applied Mathematics and Computing, 2017, 55 : 1 - 24
  • [25] The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
    Tan, Shang-wang
    Wang, Qi-long
    Lin, Yan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 1 - 24
  • [26] ENUMERATION OF GRAPHS WITH GIVEN NUMBER OF VERTICES OF ODD DEGREE
    TAZAWA, S
    COMBINATORICS /, 1988, 52 : 515 - 525
  • [27] Graphs with given odd sets and the least number of vertices
    Hakimi, SL
    JOURNAL OF GRAPH THEORY, 1997, 24 (01) : 81 - 83
  • [28] Vertices of Given Degree in Series-Parallel Graphs
    Drmota, Michael
    Gimenez, Omer
    Noy, Marc
    RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (03) : 273 - 314
  • [29] Partitioning vertices of 1-tough graphs into paths
    Bazgan, C
    Harkat-Benhamdine, A
    Li, H
    Wozniak, M
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 255 - 261
  • [30] From Colourful to Rainbow Paths in Graphs: Colouring the Vertices
    Brause, Christoph
    Jendrol', Stanislav
    Schiermeyer, Ingo
    GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1823 - 1839