Rotation on the digital plane

被引:0
|
作者
Carolin Hannusch
Attila Pethő
机构
[1] University of Debrecen,Faculty of Informatics
来源
关键词
rotation·digital; plane·lattice points·periodicity;
D O I
暂无
中图分类号
学科分类号
摘要
Let Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\varphi }$$\end{document} denote the matrix of rotation with angle φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} of the Euclidean plane, FLOOR the function which rounds a real point to the nearest lattice point down on the left and ROUND the function for rounding off a vector to the nearest node of the lattice. We prove under the natural assumption φ≠kπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \not = k\frac{\pi }{2}$$\end{document} that the functions FLOOR∘Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{FLOOR}\,}}\circ A_{\varphi }$$\end{document} and ROUND∘Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{ROUND}\,}}\circ A_{\varphi }$$\end{document} are neither surjective nor injective. More precisely we prove lower and upper estimates for the size of the sets of lattice points, which are the image of two lattice points as well as of lattice points, which have no preimages. It turns out that the densities of those sets are positive.
引用
收藏
页码:564 / 577
页数:13
相关论文
共 50 条
  • [41] The rotation of a crystal of tourmaline by plane polarised light
    Anderson, JA
    NATURE, 1908, 78 : 413 - 413
  • [42] Trajectories of Plane Motion of a Body of Rotation in a Medium
    K. Yu. Osipenko
    Mechanics of Solids, 2021, 56 : 715 - 726
  • [43] REGISTRATION OF PELVIC ROTATION IN THE FRONTAL AND SAGITTAL PLANE
    VINK, P
    ACTA MORPHOLOGICA NEERLANDO-SCANDINAVICA, 1986, 24 (02) : 148 - 148
  • [44] Biaxial mode of rotation of a satellite in the orbit plane
    Vetlov, VI
    Novichkova, SM
    Sazonov, VV
    Chebukov, SY
    COSMIC RESEARCH, 2000, 38 (06) : 588 - 598
  • [45] Trajectories of Plane Motion of a Body of Rotation in a Medium
    Osipenko, K. Yu
    MECHANICS OF SOLIDS, 2021, 56 (05) : 715 - 726
  • [46] ORBITAL INCLINATION OF LAPETUS AND THE ROTATION OF THE LAPLACIAN PLANE
    WARD, WR
    ICARUS, 1981, 46 (01) : 97 - 107
  • [47] Turbulent states in plane Couette flow with rotation
    Salewski, Matthew
    Eckhardt, Bruno
    PHYSICS OF FLUIDS, 2015, 27 (04)
  • [48] Rotation of the plane of polarization of light in a semiconductor microcavity
    Krizhanovskii, DN
    Sanvitto, D
    Shelykh, IA
    Glazov, MM
    Malpuech, G
    Solnyshkov, DD
    Kavokin, A
    Ceccarelli, S
    Skolnick, MS
    Roberts, JS
    PHYSICAL REVIEW B, 2006, 73 (07):
  • [49] 2-DIMENSIONAL EVALUATION OF A PLANE OF ROTATION
    NYPAN, LJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1968, 39 (11): : 1633 - &
  • [50] MAGNETIC ROTATION OF PLANE OF LIGHT POLARIZATION BY DIPHENYLPICRYLHYDRAZYL
    NEUPOKOEV, VI
    KLABUNOVSKII, EI
    PAVLOV, VA
    ZHURNAL FIZICHESKOI KHIMII, 1981, 55 (05): : 1333 - 1333