Rotation on the digital plane

被引:0
|
作者
Carolin Hannusch
Attila Pethő
机构
[1] University of Debrecen,Faculty of Informatics
来源
关键词
rotation·digital; plane·lattice points·periodicity;
D O I
暂无
中图分类号
学科分类号
摘要
Let Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\varphi }$$\end{document} denote the matrix of rotation with angle φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} of the Euclidean plane, FLOOR the function which rounds a real point to the nearest lattice point down on the left and ROUND the function for rounding off a vector to the nearest node of the lattice. We prove under the natural assumption φ≠kπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \not = k\frac{\pi }{2}$$\end{document} that the functions FLOOR∘Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{FLOOR}\,}}\circ A_{\varphi }$$\end{document} and ROUND∘Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{ROUND}\,}}\circ A_{\varphi }$$\end{document} are neither surjective nor injective. More precisely we prove lower and upper estimates for the size of the sets of lattice points, which are the image of two lattice points as well as of lattice points, which have no preimages. It turns out that the densities of those sets are positive.
引用
收藏
页码:564 / 577
页数:13
相关论文
共 50 条
  • [21] On the theory of the rotation of the plane of polarization by solutions
    Thomson, JJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1908, 14 : 313 - 317
  • [22] QUADRUPOLE ROTATION OF A POLARIZATION-PLANE
    ADONTS, GG
    KANETSYAN, EG
    OPTIKA I SPEKTROSKOPIYA, 1980, 48 (05): : 1021 - 1023
  • [23] BENDING OF ROTOR BLADE IN THE PLANE OF ROTATION
    YUAN, SW
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1947, 14 (05): : 285 - 293
  • [24] ROTATION OF LISTINGS PLANE DURING VERGENCE
    MOK, D
    RO, A
    CADERA, W
    CRAWFORD, JD
    VILIS, T
    VISION RESEARCH, 1992, 32 (11) : 2055 - 2064
  • [25] Full-range in-plane rotation measurement for image recognition with hybrid digital-optical correlator
    Zheng, Tianxiang
    Cao, Liangcai
    He, Qingsheng
    Jin, Guofan
    OPTICAL ENGINEERING, 2014, 53 (01)
  • [26] Achieving visual object constancy across plane rotation and depth rotation
    Lawson, R
    ACTA PSYCHOLOGICA, 1999, 102 (2-3) : 221 - 245
  • [27] DIGITAL METHOD OF VECTOR ROTATION
    ABRAMSON, IT
    LAPKIN, LJ
    KHANOV, OA
    AVTOMATIKA I VYCHISLITELNAYA TEKHNIKA, 1977, (01): : 85 - 88
  • [28] The effect of rotation in destabilizing a turbulent plane wake
    Tarbouriech, L
    Renouard, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1996, 323 (06): : 391 - 396
  • [29] SKEW ROTATION AXES IN HINGES WITH PLANE SPRINGS
    VALEDINS.AS
    MEASUREMENT TECHNIQUES-USSR, 1972, 15 (03): : 389 - &
  • [30] Particle rotation of granular materials in plane strain
    Chen, Zhibo
    Omidvar, Mehdi
    Li, Kaigang
    Iskander, Magued
    INTERNATIONAL JOURNAL OF PHYSICAL MODELLING IN GEOTECHNICS, 2017, 17 (01) : 23 - 40