Rotation on the digital plane

被引:0
|
作者
Carolin Hannusch
Attila Pethő
机构
[1] University of Debrecen,Faculty of Informatics
来源
关键词
rotation·digital; plane·lattice points·periodicity;
D O I
暂无
中图分类号
学科分类号
摘要
Let Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\varphi }$$\end{document} denote the matrix of rotation with angle φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} of the Euclidean plane, FLOOR the function which rounds a real point to the nearest lattice point down on the left and ROUND the function for rounding off a vector to the nearest node of the lattice. We prove under the natural assumption φ≠kπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \not = k\frac{\pi }{2}$$\end{document} that the functions FLOOR∘Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{FLOOR}\,}}\circ A_{\varphi }$$\end{document} and ROUND∘Aφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{ROUND}\,}}\circ A_{\varphi }$$\end{document} are neither surjective nor injective. More precisely we prove lower and upper estimates for the size of the sets of lattice points, which are the image of two lattice points as well as of lattice points, which have no preimages. It turns out that the densities of those sets are positive.
引用
收藏
页码:564 / 577
页数:13
相关论文
共 50 条
  • [1] Rotation on the digital plane
    Hannusch, Carolin
    Petho, Attila
    PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (02) : 564 - 577
  • [2] Rotation in a normed plane
    Cook, Jack
    Lovett, Jonathan
    Morgan, Frank
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (07): : 628 - 632
  • [3] DIGITAL ROTATION
    BACKHOUSE, KM
    JOURNAL OF ANATOMY, 1960, 94 (03) : 453 - 453
  • [4] Fresnel diffraction method with object wave rotation for numerical reconstruction of digital hologram on tilted plane
    Pan, Weiqing
    Zhu, Yongjian
    OPTIK, 2013, 124 (20): : 4328 - 4330
  • [5] Intrafibre rotation of the plane of polarisation
    Zel'dovich, B. Y.
    Kundikova, N. D.
    Quantum Electronics(English Translation of the Journal Kvantovaya Elektronika), 25 (02):
  • [6] A SINGLE PLANE METHOD OF ROTATION
    Thurstone, L. L.
    PSYCHOMETRIKA, 1946, 11 (02) : 71 - 79
  • [7] TRAJECTORY PLANE ROTATION OF A SATELLITE
    SCHARN, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (06): : 405 - &
  • [8] INTRAFIBRE ROTATION OF THE PLANE OF POLARIZATION
    ZELDOVICH, BY
    KUNDIKOVA, ND
    KVANTOVAYA ELEKTRONIKA, 1995, 22 (02): : 184 - 186
  • [9] MANDIBULAR PLANE AND MANDIBULAR ROTATION
    LULLA, P
    GIANELLY, AA
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 1976, 70 (05) : 567 - 571
  • [10] DIGITAL ROTATION OF VERTEX
    LOWENSTEIN, A
    ZEVIN, R
    OBSTETRICS AND GYNECOLOGY, 1971, 37 (05): : 790 - +