Large-scale GWAS of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits

被引:0
|
作者
Sebastian May-Wilson
Nana Matoba
Kaitlin H. Wade
Jouke-Jan Hottenga
Maria Pina Concas
Massimo Mangino
Eryk J. Grzeszkowiak
Cristina Menni
Paolo Gasparini
Nicholas J. Timpson
Maria G. Veldhuizen
Eco de Geus
James F. Wilson
Nicola Pirastu
机构
[1] University of Edinburgh,Centre for Global Health Research, Usher Institute
[2] University of North Carolina at Chapel Hill,Department of Genetics
[3] University of North Carolina at Chapel Hill,UNC Neuroscience Center
[4] University of Bristol,Population Health Sciences, Bristol Medical School
[5] Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol,Dept of Biological Psychology, FGB
[6] Vrije Universiteit Amsterdam,Department of Twin Research and Genetic Epidemiology
[7] Institute for Maternal and Child Health—IRCCS,Department of Medicine, Surgery and Health Sciences
[8] Burlo Garofolo,Department of Anatomy, Faculty of Medicine
[9] King’s College London,MRC Human Genetics Unit, Institute of Genetics and Cancer
[10] NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust,undefined
[11] University of Trieste,undefined
[12] Mersin University,undefined
[13] Amsterdam Public Health research institute,undefined
[14] University of Edinburgh,undefined
[15] Human Technopole,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present the results of a GWAS of food liking conducted on 161,625 participants from the UK-Biobank. Liking was assessed over 139 specific foods using a 9-point scale. Genetic correlations coupled with structural equation modelling identified a multi-level hierarchical map of food-liking with three main dimensions: “Highly-palatable”, “Acquired” and “Low-caloric”. The Highly-palatable dimension is genetically uncorrelated from the other two, suggesting that independent processes underlie liking high reward foods. This is confirmed by genetic correlations with MRI brain traits which show with distinct associations. Comparison with the corresponding food consumption traits shows a high genetic correlation, while liking exhibits twice the heritability. GWAS analysis identified 1,401 significant food-liking associations which showed substantial agreement in the direction of effects with 11 independent cohorts. In conclusion, we created a comprehensive map of the genetic determinants and associated neurophysiological factors of food-liking.
引用
收藏
相关论文
共 50 条
  • [41] Genetic algorithms for large-scale clustering problems
    Franti, P
    Kivijarvi, J
    Kaukoranta, T
    Nevalainen, O
    COMPUTER JOURNAL, 1997, 40 (09): : 547 - 554
  • [42] Large-scale GWAS meta-analyses identify novel genetic loci robustly associated with neuroticism and depression
    Okbay, Aysu
    Baselmans, Bart
    De Neve, Jan-Emmanuel
    Turley, Patrick
    Nivard, Michel
    Fontana, Mark
    Meddens, Fleur
    Linner, Richard Karlsson
    Rietveld, Cornelius
    Krueger, Bob
    Beauchamp, Jonathan
    Koellinger, Philipp
    Benjamin, Daniel
    Bartels, Meike
    Cesarini, David
    BEHAVIOR GENETICS, 2016, 46 (06) : 799 - 799
  • [43] Phenotype consensus is required to enable large-scale genetic consortium studies of food allergy
    Asai, Yuka
    Martino, David
    Eiwegger, Thomas
    Nadeau, Kari
    Koppelman, Gerard H.
    Clarke, Ann E.
    Lee, Young-Ae
    Chan, Edmond S.
    Simons, Elinor
    Laprise, Catherine
    Mazer, Bruce
    Marenholz, Ingo
    Royce, Diana
    Elliott, Susan J.
    Hampson, Christine
    Gerdts, Jennifer
    Eslami, Aida
    Soller, Lianne
    Hui, Jennie
    Azad, Meghan
    Sandford, Andrew
    Daley, Denise
    ALLERGY, 2020, 75 (09) : 2383 - 2387
  • [44] Integrating RNA-seq and GWAS reveals novel genetic mutations for buffalo reproductive traits
    Li, J.
    Liu, J.
    Liu, S.
    Plastow, G.
    Zhang, C.
    Wang, Z.
    Campanile, G.
    Salzano, A.
    Gasparrini, B.
    Hua, G.
    Liang, A.
    Yang, L.
    ANIMAL REPRODUCTION SCIENCE, 2018, 197 : 290 - 295
  • [45] Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens
    Koiwa, H
    Bressan, RA
    Hasegawa, PM
    JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (05) : 1119 - 1128
  • [46] Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies
    Mazzarotto, Francesco
    Hawley, Megan H.
    Beltrami, Matteo
    Beekman, Leander
    de Marvao, Antonio
    McGurk, Kathryn A.
    Statton, Ben
    Boschi, Beatrice
    Girolami, Francesca
    Roberts, Angharad M.
    Lodder, Elisabeth M.
    Allouba, Mona
    Romeih, Soha
    Aguib, Yasmine
    Baksi, A. John
    Pantazis, Antonis
    Prasad, Sanjay K.
    Cerbai, Elisabetta
    Yacoub, Magdi H.
    O'Regan, Declan P.
    Cook, Stuart A.
    Ware, James S.
    Funke, Birgit
    Olivotto, Iacopo
    Bezzina, Connie R.
    Barton, Paul J. R.
    Walsh, Roddy
    GENETICS IN MEDICINE, 2021, 23 (05) : 856 - 864
  • [47] Genetic control of heart rate in the general population - a large-scale genetic analysis
    Debiec, R.
    Nelson, C. P.
    Braund, P. S.
    Rodrigo, G.
    Tobin, M. D.
    Tomaszewski, M.
    Samani, N. J.
    EUROPEAN HEART JOURNAL, 2010, 31 : 149 - 149
  • [48] Large-Scale Computational Modeling of Genetic Regulatory Networks
    M. Stetter
    G. Deco
    M. Dejori
    Artificial Intelligence Review, 2003, 20 : 75 - 93
  • [49] Large-scale genetic epistasis networks using RNAi
    Xiaoyue Wang
    Kevin P White
    Nature Methods, 2011, 8 : 299 - 301
  • [50] Elucidating COPD pathogenesis by large-scale genetic analyses
    Brusselle, Guy G.
    Bracke, Ken R.
    LANCET RESPIRATORY MEDICINE, 2015, 3 (10): : 737 - 739