Large-Scale Computational Modeling of Genetic Regulatory Networks

被引:0
|
作者
M. Stetter
G. Deco
M. Dejori
机构
[1] Siemens AG,Corporate Technology, Information and Communications, CT IC 4
[2] University Pompeu Fabra,Technology Department
[3] Technical University of Munich,Department of Computer Science
来源
关键词
Bayesian networks; DNA-microarrays; genetic pathways; systems biology;
D O I
暂无
中图分类号
学科分类号
摘要
The perhaps most important signaling network in living cells is constitutedby the interactions of proteins with the genome – the regulatory geneticnetwork of the cell. From a system-level point of view, the variousinteractions and control loops, which form a genetic network, represent thebasis upon which the vast complexity and flexibility of life processesemerges. Here we provide a review over some efforts towards gaining aquantitative understanding of regulatory genetic networks by means of largescale computational models. After a brief description of the biologicalprinciples of gene regulation, we summarize recent advances in massivegene-expression measurements by DNA-microarrays, which form the to date mostpowerful data basis for models of genetic networks. One class of models suchas reaction-diffusion networks and nonlinear dynamical descriptions arebiased towards using explicit molecular biological knowledge. A secondclass, centered around machine learning approaches like neural networks andBayesian networks, adopts a more data-driven approach and thereby makesmassive use of the novel gene expression measurement techniques.
引用
收藏
页码:75 / 93
页数:18
相关论文
共 50 条
  • [1] Large-scale computational modeling of genetic regulatory networks
    Stetter, M
    Deco, G
    Dejori, M
    ARTIFICIAL INTELLIGENCE REVIEW, 2003, 20 (1-2) : 75 - 93
  • [2] Parallel Model Checking Large-Scale Genetic Regulatory Networks with DiVinE
    Barnat, J.
    Brim, L.
    Cerna, I.
    Drazan, S.
    Safranek, D.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2008, 194 (03) : 35 - 50
  • [3] Automated Large-Scale Control of Gene Regulatory Networks
    Tan, Mehmet
    Alhajj, Reda
    Polat, Faruk
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02): : 286 - 297
  • [4] Large-scale path modeling of remixing to computational thinking
    Xing, Wanli
    INTERACTIVE LEARNING ENVIRONMENTS, 2021, 29 (03) : 414 - 427
  • [5] Modeling techniques for large-scale PCS networks
    Lin, YB
    IEEE COMMUNICATIONS MAGAZINE, 1997, 35 (02) : 102 - 107
  • [6] Throughput Modeling of Large-Scale 802.11 Networks
    Timmers, Michael
    Pollin, Sofie
    Dejonghe, Antoine
    Van der Perre, Liesbet
    Catthoor, Francky
    GLOBECOM 2008 - 2008 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, 2008,
  • [7] Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors
    Kemmeren, Patrick
    Sameith, Katrin
    van de Pasch, Loes A. L.
    Benschop, Joris J.
    Lenstra, Tineke L.
    Margaritis, Thanasis
    O'Duibhir, Eoghan
    Apweiler, Eva
    van Wageningen, Sake
    Ko, Cheuk W.
    van Heesch, Sebastiaan
    Kashani, Mehdi M.
    Ampatziadis-Michailidis, Giannis
    Brok, Mariel O.
    Brabers, Nathalie A. C. H.
    Miles, Anthony J.
    Bouwmeester, Diane
    van Hooff, Sander R.
    van Bakel, Harm
    Sluiters, Erik
    Bakker, Linda V.
    Snel, Berend
    Lijnzaad, Philip
    van Leenen, Dik
    Koerkamp, Marian J. A. Groot
    Holstege, Frank C. P.
    CELL, 2014, 157 (03) : 740 - 752
  • [8] Large-scale modeling of condition-specific gene regulatory networks by information integration and inference
    Ellwanger, Daniel Christian
    Leonhardt, Joern Florian
    Mewes, Hans-Werner
    NUCLEIC ACIDS RESEARCH, 2014, 42 (21)
  • [9] Large-scale computational identification of regulatory SNPs with rSNP-MAPPER
    Riva, Alberto
    BMC GENOMICS, 2012, 13
  • [10] Large-scale computational identification of regulatory SNPs with rSNP-MAPPER
    Alberto Riva
    BMC Genomics, 13