On the Equality of Bajraktarević Means to Quasi-Arithmetic Means

被引:0
|
作者
Zsolt Páles
Amr Zakaria
机构
[1] University of Debrecen,Institute of Mathematics
[2] University of Debrecen,Doctoral School of Mathematical and Computational Sciences
[3] Ain Shams University,Department of Mathematics, Faculty of Education
来源
Results in Mathematics | 2020年 / 75卷
关键词
Bajraktarević mean; quasi-arithmetic mean; equality problem; functional equation; regularity theory; 39B22; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper offers a solution of the functional equation (tf(x)+(1-t)f(y))φ(tx+(1-t)y)=tf(x)φ(x)+(1-t)f(y)φ(y)(x,y∈I),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\big (tf(x)+(1-t)f(y)\big )\varphi (tx+(1-t)y)\\&\quad =tf(x)\varphi (x)+(1-t)f(y)\varphi (y) \qquad (x,y\in I), \end{aligned}$$\end{document}where t∈]0,1[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \,]0,1[\,$$\end{document}, φ:I→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi :I\rightarrow \mathbb {R}$$\end{document} is strictly monotone, and f:I→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:I\rightarrow \mathbb {R}$$\end{document} is an arbitrary unknown function. As an immediate application, we shed new light on the equality problem of Bajraktarević means with quasi-arithmetic means.
引用
收藏
相关论文
共 50 条
  • [41] Commutativity of integral quasi-arithmetic means on measure spaces
    Glazowska, D.
    Leonetti, P.
    Matkowski, J.
    Tringali, S.
    ACTA MATHEMATICA HUNGARICA, 2017, 153 (02) : 350 - 355
  • [42] Convexity according to a pair of quasi-arithmetic means and inequalities
    Dinh Thanh Duc
    Nguyen Ngoc Hue
    Nguyen Du Vi Nhan
    Vu Kim Tuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
  • [43] Embeddability of pairs of weighted quasi-arithmetic means into a semiflow
    Dorota Głazowska
    Justyna Jarczyk
    Witold Jarczyk
    Aequationes mathematicae, 2020, 94 : 679 - 687
  • [44] Lower estimation of the difference between quasi-arithmetic means
    Pasteczka, Pawel
    AEQUATIONES MATHEMATICAE, 2018, 92 (01) : 7 - 24
  • [45] A NEW ESTIMATE OF THE DIFFERENCE AMONG QUASI-ARITHMETIC MEANS
    Pasteczka, Pawel
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1321 - 1327
  • [46] Investigations on quasi-arithmetic means for machine condition monitoring
    Hou, Bingchang
    Wang, Dong
    Xia, Tangbin
    Wang, Yi
    Zhao, Yang
    Tsui, Kwok-Leung
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151
  • [47] Lower estimation of the difference between quasi-arithmetic means
    Paweł Pasteczka
    Aequationes mathematicae, 2018, 92 : 7 - 24
  • [48] Comparison theorems between several quasi-arithmetic means
    Abramovich, S
    Pecaric, J
    Varosanec, S
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (01): : 1 - 6
  • [49] ORDER AMONG QUASI-ARITHMETIC MEANS OF POSITIVE OPERATORS
    Micic, Jadranka
    Pecaric, Josip
    Seo, Yuki
    MATHEMATICAL REPORTS, 2012, 14 (01): : 71 - 86
  • [50] Commutativity of integral quasi-arithmetic means on measure spaces
    D. Głazowska
    P. Leonetti
    J. Matkowski
    S. Tringali
    Acta Mathematica Hungarica, 2017, 153 : 350 - 355