On the Equality of Bajraktarević Means to Quasi-Arithmetic Means

被引:0
|
作者
Zsolt Páles
Amr Zakaria
机构
[1] University of Debrecen,Institute of Mathematics
[2] University of Debrecen,Doctoral School of Mathematical and Computational Sciences
[3] Ain Shams University,Department of Mathematics, Faculty of Education
来源
Results in Mathematics | 2020年 / 75卷
关键词
Bajraktarević mean; quasi-arithmetic mean; equality problem; functional equation; regularity theory; 39B22; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper offers a solution of the functional equation (tf(x)+(1-t)f(y))φ(tx+(1-t)y)=tf(x)φ(x)+(1-t)f(y)φ(y)(x,y∈I),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\big (tf(x)+(1-t)f(y)\big )\varphi (tx+(1-t)y)\\&\quad =tf(x)\varphi (x)+(1-t)f(y)\varphi (y) \qquad (x,y\in I), \end{aligned}$$\end{document}where t∈]0,1[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \,]0,1[\,$$\end{document}, φ:I→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi :I\rightarrow \mathbb {R}$$\end{document} is strictly monotone, and f:I→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:I\rightarrow \mathbb {R}$$\end{document} is an arbitrary unknown function. As an immediate application, we shed new light on the equality problem of Bajraktarević means with quasi-arithmetic means.
引用
收藏
相关论文
共 50 条
  • [21] Invariance equation for generalized quasi-arithmetic means
    Bajak, Szabolcs
    Pales, Zsolt
    AEQUATIONES MATHEMATICAE, 2009, 77 (1-2) : 133 - 145
  • [22] Some results on Lipschitz quasi-arithmetic means
    Beliakov, Gleb
    Calvo, Tomasa
    James, Simon
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1370 - 1375
  • [23] On an equation involving weighted quasi-arithmetic means
    Jarczyk, J.
    ACTA MATHEMATICA HUNGARICA, 2010, 129 (1-2) : 96 - 111
  • [24] Limit properties in a family of quasi-arithmetic means
    Paweł Pasteczka
    Aequationes mathematicae, 2016, 90 : 773 - 785
  • [25] Weighted Quasi-arithmetic Means and Conditional Expectations
    Yoshida, Yuji
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 31 - 42
  • [26] Invariance of quasi-arithmetic means with function weights
    Jarczyk, Justyna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) : 134 - 140
  • [27] Quasi-arithmetic elements of a given class of means
    Daróczy, Z
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2004, 65 (3-4): : 317 - 322
  • [28] On linear combinations of weighted quasi-arithmetic means
    Daróczy Z.
    Hajdu G.
    aequationes mathematicae, 2005, 69 (1-2) : 58 - 67
  • [29] On an equation involving weighted quasi-arithmetic means
    J. Jarczyk
    Acta Mathematica Hungarica, 2010, 129 : 96 - 111
  • [30] ON WEIGHTED QUASI-ARITHMETIC MEANS WHICH ARE CONVEX
    Chudziak, Jacek
    Glazowska, Dorota
    Jarczyk, Justyna
    Jarczyk, Witold
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1123 - 1136