On intersections of independent anisotropic Gaussian random fields

被引:0
|
作者
ZhenLong Chen
YiMin Xiao
机构
[1] Zhejiang Gongshang University,School of Statistics and Mathematics
[2] Michigan State University,Department of Statistics and Probability
来源
Science China Mathematics | 2012年 / 55卷
关键词
intersection; anisotropic Gaussian fields; hitting probability; Hausdorff dimension; stochastic heat equation; fractional Brownian sheet; 60G15; 60G17; 60G60;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^H = \{ X^H (s),s \in \mathbb{R}^{N_1 } \} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^K = \{ X^K (t),t \in \mathbb{R}^{N_2 } \} $\end{document} be two independent anisotropic Gaussian random fields with values in ℝd with indices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H = (H_1 ,...,H_{N_1 } ) \in (0,1)^{N_1 } ,K = (K_1 ,...,K_{N_2 } ) \in (0,1)^{N_2 } $\end{document}, respectively. Existence of intersections of the sample paths of XH and XK is studied. More generally, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_1 \subseteq \mathbb{R}^{N_1 } ,E_2 \subseteq \mathbb{R}^{N_2 } $\end{document} and F ⊂ ℝd be Borel sets. A necessary condition and a sufficient condition for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}\{ (X^H (E_1 ) \cap X^K (E_2 )) \cap F \ne \not 0\} > 0$\end{document} in terms of the Bessel-Riesz type capacity and Hausdorff measure of E1 × E2 × F in the metric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb{R}^{N_1 + N_2 + d} ,\tilde \rho )$\end{document} are proved, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \rho $\end{document} is a metric defined in terms of H and K. These results are applicable to solutions of stochastic heat equations driven by space-time Gaussian noise and fractional Brownian sheets.
引用
下载
收藏
页码:2217 / 2232
页数:15
相关论文
共 50 条
  • [41] Gaussian Fields and Random Packing
    Yu. Baryshnikov
    J. E. Yukich
    Journal of Statistical Physics, 2003, 111 : 443 - 463
  • [42] OPTIMIZATION OF GAUSSIAN RANDOM FIELDS
    Dow, Eric
    Wang, Qiqi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04): : A1685 - A1704
  • [43] GAUSSIAN RANDOM-FIELDS
    BROMLEY, C
    KALLIANPUR, G
    APPLIED MATHEMATICS AND OPTIMIZATION, 1980, 6 (04): : 361 - 376
  • [44] Redundancy in Gaussian random fields
    De Bortoli, Valentin
    Desolneux, Agnes
    Galerne, Bruno
    Leclaire, Arthur
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 627 - 660
  • [45] THEOREM ON GAUSSIAN RANDOM FIELDS
    DEO, CM
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1973, 18 (02): : 384 - 387
  • [46] STRUCTURES IN RANDOM-FIELDS - GAUSSIAN FIELDS
    BETANCORTRIJO, J
    PHYSICAL REVIEW A, 1992, 45 (06): : 3447 - 3466
  • [47] RENORMALIZED FIELD-THEORY OF QUENCHED SYSTEM UNDER GAUSSIAN RANDOM FIELDS CONJUGATE TO ANISOTROPIC SPIN FIELDS
    OKU, M
    ABE, R
    PROGRESS OF THEORETICAL PHYSICS, 1980, 64 (05): : 1577 - 1586
  • [48] SELF-INTERSECTIONS OF RANDOM-FIELDS
    ROSEN, J
    ANNALS OF PROBABILITY, 1984, 12 (01): : 108 - 119
  • [49] Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields
    Apputhurai, Pragalathan
    Stephenson, Alec G.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2013, 20 (04) : 667 - 677
  • [50] Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields
    Pragalathan Apputhurai
    Alec G. Stephenson
    Environmental and Ecological Statistics, 2013, 20 : 667 - 677