On intersections of independent anisotropic Gaussian random fields

被引:0
|
作者
ZhenLong Chen
YiMin Xiao
机构
[1] Zhejiang Gongshang University,School of Statistics and Mathematics
[2] Michigan State University,Department of Statistics and Probability
来源
Science China Mathematics | 2012年 / 55卷
关键词
intersection; anisotropic Gaussian fields; hitting probability; Hausdorff dimension; stochastic heat equation; fractional Brownian sheet; 60G15; 60G17; 60G60;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^H = \{ X^H (s),s \in \mathbb{R}^{N_1 } \} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^K = \{ X^K (t),t \in \mathbb{R}^{N_2 } \} $\end{document} be two independent anisotropic Gaussian random fields with values in ℝd with indices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H = (H_1 ,...,H_{N_1 } ) \in (0,1)^{N_1 } ,K = (K_1 ,...,K_{N_2 } ) \in (0,1)^{N_2 } $\end{document}, respectively. Existence of intersections of the sample paths of XH and XK is studied. More generally, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_1 \subseteq \mathbb{R}^{N_1 } ,E_2 \subseteq \mathbb{R}^{N_2 } $\end{document} and F ⊂ ℝd be Borel sets. A necessary condition and a sufficient condition for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}\{ (X^H (E_1 ) \cap X^K (E_2 )) \cap F \ne \not 0\} > 0$\end{document} in terms of the Bessel-Riesz type capacity and Hausdorff measure of E1 × E2 × F in the metric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb{R}^{N_1 + N_2 + d} ,\tilde \rho )$\end{document} are proved, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \rho $\end{document} is a metric defined in terms of H and K. These results are applicable to solutions of stochastic heat equations driven by space-time Gaussian noise and fractional Brownian sheets.
引用
下载
收藏
页码:2217 / 2232
页数:15
相关论文
共 50 条
  • [31] FERNIQUE-TYPE INEQUALITIES AND MODULI OF CONTINUITY FOR ANISOTROPIC GAUSSIAN RANDOM FIELDS
    Meerschaert, Mark M.
    Wang, Wensheng
    Xiao, Yimin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (02) : 1081 - 1107
  • [32] Hausdorff Measure of the Range of Space-Time Anisotropic Gaussian Random Fields
    Ni, Wenqing
    Chen, Zhenlong
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) : 264 - 282
  • [33] The self-intersections of a Gaussian random field
    Zhang, Rongmao
    Lin, Zhengyan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (09) : 1294 - 1318
  • [34] The self-intersections of a Gaussian random field
    Department of mathematics, Zhejiang University, Xixi Campus, Hangzhou, China
    Stoch. Processes Appl., 2006, 9 (1294-1318):
  • [35] NON-GAUSSIAN RANDOM FIELDS FROM INDEPENDENT SOURCES IN DESCRETE LATTICE
    SHTREMEL, MA
    MELNICHENKO, AS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (06): : 133 - 139
  • [36] Hausdorff Measure and Uniform Dimension for Space-Time Anisotropic Gaussian Random Fields
    Yuan, Weijie
    Chen, Zhenlong
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (03) : 2304 - 2329
  • [37] Gaussian Process Random Fields
    Moore, David A.
    Russell, Stuart J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [38] Gaussian random fields on manifolds
    Adler, RJ
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS IV, 2004, 58 : 3 - 19
  • [39] Gaussian fields and random packing
    Baryshnikov, Y
    Yukich, JE
    JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (1-2) : 443 - 463
  • [40] GAUSSIAN FIELDS AND RANDOM FLOW
    CHORIN, AJ
    JOURNAL OF FLUID MECHANICS, 1974, 63 (MAR18) : 21 - 32