On intersections of independent anisotropic Gaussian random fields

被引:0
|
作者
ZhenLong Chen
YiMin Xiao
机构
[1] Zhejiang Gongshang University,School of Statistics and Mathematics
[2] Michigan State University,Department of Statistics and Probability
来源
Science China Mathematics | 2012年 / 55卷
关键词
intersection; anisotropic Gaussian fields; hitting probability; Hausdorff dimension; stochastic heat equation; fractional Brownian sheet; 60G15; 60G17; 60G60;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^H = \{ X^H (s),s \in \mathbb{R}^{N_1 } \} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X^K = \{ X^K (t),t \in \mathbb{R}^{N_2 } \} $\end{document} be two independent anisotropic Gaussian random fields with values in ℝd with indices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H = (H_1 ,...,H_{N_1 } ) \in (0,1)^{N_1 } ,K = (K_1 ,...,K_{N_2 } ) \in (0,1)^{N_2 } $\end{document}, respectively. Existence of intersections of the sample paths of XH and XK is studied. More generally, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_1 \subseteq \mathbb{R}^{N_1 } ,E_2 \subseteq \mathbb{R}^{N_2 } $\end{document} and F ⊂ ℝd be Borel sets. A necessary condition and a sufficient condition for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{P}\{ (X^H (E_1 ) \cap X^K (E_2 )) \cap F \ne \not 0\} > 0$\end{document} in terms of the Bessel-Riesz type capacity and Hausdorff measure of E1 × E2 × F in the metric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb{R}^{N_1 + N_2 + d} ,\tilde \rho )$\end{document} are proved, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \rho $\end{document} is a metric defined in terms of H and K. These results are applicable to solutions of stochastic heat equations driven by space-time Gaussian noise and fractional Brownian sheets.
引用
下载
收藏
页码:2217 / 2232
页数:15
相关论文
共 50 条
  • [1] On intersections of independent anisotropic Gaussian random fields
    Chen ZhenLong
    Xiao YiMin
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (11) : 2217 - 2232
  • [2] On intersections of independent anisotropic Gaussian random fields
    CHEN ZhenLong 1
    2 Department of Statistics and Probability
    Science China Mathematics, 2012, 55 (11) : 2217 - 2232
  • [3] On intersections of independent space-time anisotropic Gaussian fields
    Chen, Zhenlong
    Wang, Jun
    Wu, Dongsheng
    STATISTICS & PROBABILITY LETTERS, 2020, 166
  • [4] Multiple intersections of space-time anisotropic Gaussian fields
    Zhenlong Chen
    Weijie Yuan
    Acta Mathematica Scientia, 2024, 44 : 275 - 294
  • [5] Multiple intersections of space-time anisotropic Gaussian fields
    Chen, Zhenlong
    Yuan, Weijie
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 275 - 294
  • [6] MULTIPLE INTERSECTIONS OF SPACE-TIME ANISOTROPIC GAUSSIAN FIELDS
    陈振龙
    苑伟杰
    Acta Mathematica Scientia, 2024, 44 (01) : 275 - 294
  • [7] Polar Functions for Anisotropic Gaussian Random Fields
    Chen, Zhenlong
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] Disks as Inhomogeneous, Anisotropic Gaussian Random Fields
    Lee, Daeyoung
    Gammie, Charles F.
    ASTROPHYSICAL JOURNAL, 2021, 906 (01):
  • [9] Polar sets for anisotropic Gaussian random fields
    Soehl, Jakob
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (9-10) : 840 - 847
  • [10] Characterization of anisotropic Gaussian random fields by Minkowski tensors
    Klatt, Michael Andreas
    Hoermann, Max
    Mecke, Klaus
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (04):