Sunflowers and Testing Triangle-Freeness of Functions

被引:0
|
作者
Ishay Haviv
Ning Xie
机构
[1] The Academic College of Tel Aviv-Yaffo,School of Computer Science
[2] Florida International University,SCIS
来源
computational complexity | 2017年 / 26卷
关键词
property testing; triangle-freeness; sunflowers; 68Q17; 68Q25; 68W20; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
A function f:F2n→{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f : {\mathbb F}_{2}^{n} \rightarrow {\{0,1\}}}$$\end{document} is triangle-free if there are no x1,x2,x3∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1},x_{2},x_{3} \in {\mathbb F}_{2}^{n}}$$\end{document} satisfying x1+x2+x3=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1} + x_{2} + x_{3} = 0}$$\end{document} and f(x1)=f(x2)=f(x3)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(x_{1}) = f(x_{2}) = f(x_{3}) = 1}$$\end{document}. In testing triangle-freeness, the goal is to distinguish with high probability triangle-free functions from those that are ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document}-far from being triangle-free. It was shown by Green that the query complexity of the canonical tester for the problem is upper bounded by a function that depends only on ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} (Green 2005); however, the best-known upper bound is a tower-type function of 1/ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon}$$\end{document}. The best known lower bound on the query complexity of the canonical tester is 1/ε13.239\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon^{13.239}}$$\end{document} (Fu & Kleinberg 2014).
引用
收藏
页码:497 / 530
页数:33
相关论文
共 50 条
  • [41] Algebraic values of schwarz triangle functions
    Shiga, Hironori
    Wolfart, Jurgen
    ARITHMETIC AND GEOMETRY AROUND HYPERGEOMETRIC FUNCTIONS, 2007, 260 : 287 - 312
  • [42] Subsemigroups of virtually free groups: finite Malcev presentations and testing for freeness
    Cain, Alan J.
    Robertson, Edmund F.
    Ruskuc, Nik
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 141 : 57 - 66
  • [43] Efficient algorithm for testing structure freeness of finite set of biomolecular sequences
    Kijima, Atsushi
    Kobayashi, Satoshi
    DNA COMPUTING, 2006, 3892 : 171 - 180
  • [44] Some Properties of Membership Functions Composed of Triangle Functions and Piecewise Linear Functions
    Mitsuishi, Takashi
    FORMALIZED MATHEMATICS, 2021, 29 (02): : 103 - 115
  • [45] Projective freeness and stable rank of algebras of complex-valued BV functions
    Brudnyi, Alexander
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (03): : 844 - 853
  • [46] Analytical derivation of basis functions for Argyris triangle
    Kostin, G
    Saurin, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S871 - S872
  • [47] The Chazy XII Equation and Schwarz Triangle Functions
    Bihun, Oksana
    Chakravarty, Sarbarish
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [48] Property Testing in Sparse Directed Graphs: Strong Connectivity and Subgraph-Freeness
    Hellweg, Frank
    Sohler, Christian
    ALGORITHMS - ESA 2012, 2012, 7501 : 599 - 610
  • [49] A NONCOMMUTATIVE TAYLOR FORMULA AND FUNCTIONS OF TRIANGLE OPERATORS
    DALETSKII, YL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1990, 24 (01) : 64 - 66
  • [50] Symmetric triangle quadrature rules for arbitrary functions
    Freno, Brian A.
    Johnson, William A.
    Zinser, Brian F.
    Campione, Salvatore
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2885 - 2896