Sunflowers and Testing Triangle-Freeness of Functions

被引:0
|
作者
Ishay Haviv
Ning Xie
机构
[1] The Academic College of Tel Aviv-Yaffo,School of Computer Science
[2] Florida International University,SCIS
来源
computational complexity | 2017年 / 26卷
关键词
property testing; triangle-freeness; sunflowers; 68Q17; 68Q25; 68W20; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
A function f:F2n→{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f : {\mathbb F}_{2}^{n} \rightarrow {\{0,1\}}}$$\end{document} is triangle-free if there are no x1,x2,x3∈F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1},x_{2},x_{3} \in {\mathbb F}_{2}^{n}}$$\end{document} satisfying x1+x2+x3=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{1} + x_{2} + x_{3} = 0}$$\end{document} and f(x1)=f(x2)=f(x3)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(x_{1}) = f(x_{2}) = f(x_{3}) = 1}$$\end{document}. In testing triangle-freeness, the goal is to distinguish with high probability triangle-free functions from those that are ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document}-far from being triangle-free. It was shown by Green that the query complexity of the canonical tester for the problem is upper bounded by a function that depends only on ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} (Green 2005); however, the best-known upper bound is a tower-type function of 1/ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon}$$\end{document}. The best known lower bound on the query complexity of the canonical tester is 1/ε13.239\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1/\varepsilon^{13.239}}$$\end{document} (Fu & Kleinberg 2014).
引用
收藏
页码:497 / 530
页数:33
相关论文
共 50 条
  • [21] Testing structure freeness of regular sets of Biomolecular sequences
    Kobayashi, S
    DNA COMPUTING, 2005, 3384 : 192 - 201
  • [22] Flatness testing and torsion freeness of analytic tensor powers
    Adamus, J
    JOURNAL OF ALGEBRA, 2005, 289 (01) : 148 - 160
  • [23] Testing Subdivision-Freeness: - Property Testing Meets Structural Graph Theory -
    Kawarabayashi, Ken-ichi
    Yoshida, Yuichi
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 437 - 445
  • [24] Aggregation of triangle of distortion functions
    Nedovic, Ljubo
    Pap, Endre
    Dragic, Dorde
    INFORMATION SCIENCES, 2021, 563 : 401 - 417
  • [25] NOTE ON THE SCHWARZ TRIANGLE FUNCTIONS
    LEHNER, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) : 394 - 394
  • [26] A primer on triangle functions II
    Susanne Saminger-Platz
    Carlo Sempi
    Aequationes mathematicae, 2010, 80 : 239 - 268
  • [27] A primer on triangle functions II
    Saminger-Platz, Susanne
    Sempi, Carlo
    AEQUATIONES MATHEMATICAE, 2010, 80 (03) : 239 - 268
  • [28] Note on the Schwarz triangle functions
    Harmer, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 72 (03) : 385 - 389
  • [29] A limit theorem for triangle functions
    Pap, E
    Stajner-Papuga, I
    FUZZY SETS AND SYSTEMS, 2006, 157 (02) : 292 - 307
  • [30] A primer on triangle functions I
    Saminger-Platz, Susanne
    Sempi, Carlo
    AEQUATIONES MATHEMATICAE, 2008, 76 (03) : 201 - 240