Experimental realization of a quantum algorithm

被引:0
|
作者
Isaac L. Chuang
Lieven M. K. Vandersypen
Xinlan Zhou
Debbie W. Leung
Seth Lloyd
机构
[1] IBM Almaden Research Center,
[2] Solid State and Photonics Laboratory,undefined
[3] Stanford University,undefined
[4] Edward L. Ginzton Laboratory,undefined
[5] Stanford University,undefined
[6] MIT Department of Mechanical Engineering,undefined
来源
Nature | 1998年 / 393卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum computers1,2,3,4,5 can in principle exploit quantum-mechanical effects to perform computations (such as factoring large numbers or searching an unsorted database) more rapidly than classical computers1,2,6,7,8. But noise, loss of coherence, and manufacturing problems make constructing large-scale quantum computers difficult9,10,11,12,13. Although ion traps and optical cavities offer promising experimental approaches14,15, no quantum algorithm has yet been implemented with these systems. Here we report the experimental realization of a quantum algorithm using a bulk nuclear magnetic resonance technique16,17,18, in which the nuclear spins act as ‘quantum bits’19. The nuclear spins are particularly suited to this role because of their natural isolation from the environment. Our simple quantum computer solves a purely mathematical problem in fewer steps than is possible classically, requiring fewer ‘function calls’ than a classical computer to determine the global properties of an unknown function.
引用
下载
收藏
页码:143 / 146
页数:3
相关论文
共 50 条
  • [41] Experimental Realization of a Quantum Dot Energy Harvester
    Jaliel, G.
    Puddy, R. K.
    Sanchez, R.
    Jordan, A. N.
    Sothmann, B.
    Farrer, I.
    Griffiths, J. P.
    Ritchie, D. A.
    Smith, C. G.
    PHYSICAL REVIEW LETTERS, 2019, 123 (11)
  • [42] Experimental realization of the quantum metrological triangle experiment
    Chenaud, B.
    Devoille, L.
    Steck, B.
    Feltin, N.
    Gonzalez-Cano, A.
    Poirier, W.
    Schopfer, F.
    Spengler, G.
    Djordjevic, S.
    Seron, O.
    Piquemal, F.
    Lotkhov, S.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 2, 2009, 150
  • [43] Experimental Realization of Quantum Teleportation as Cluster Computation
    Ukai, Ryuji
    Armstrong, Seiji C.
    van Loock, Peter
    Furusawa, Akira
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 1945 - +
  • [44] Experimental realization of Hamiltonian tomography by quantum quenches
    Chen, Xi
    Li, Yuchen
    Wu, Ze
    Liu, Ran
    Li, Zhaokai
    Zhou, Hui
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [45] Experimental realization of direct characterization of quantum dynamics
    Wang, Zhi-Wei
    Zhang, Yong-Sheng
    Huang, Yun-Feng
    Ren, Xi-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2007, 75 (04)
  • [46] Experimental realization of a quantum breathing pyrochlore antiferromagnet
    Kimura, K.
    Nakatsuji, S.
    Kimura, T.
    PHYSICAL REVIEW B, 2014, 90 (06):
  • [47] Experimental realization of quantum random number generator
    Soubusta, J
    Haderka, O
    Hendrych, M
    Pavlícek, P
    13TH POLISH-CZECH-SLOVAK CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2003, 5259 : 7 - 13
  • [48] Experimental Realization of Nonadiabatic Holonomic Quantum Computation
    Feng, Guanru
    Xu, Guofu
    Long, Guilu
    PHYSICAL REVIEW LETTERS, 2013, 110 (19)
  • [49] Experimental Realization of a Quantum Support Vector Machine
    Li, Zhaokai
    Liu, Xiaomei
    Xu, Nanyang
    Du, Jiangfeng
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [50] Experimental realization of a continuous version of the Grover algorithm
    Ermakov, VL
    Fung, BM
    PHYSICAL REVIEW A, 2002, 66 (04): : 6