Experimental realization of a quantum algorithm

被引:0
|
作者
Isaac L. Chuang
Lieven M. K. Vandersypen
Xinlan Zhou
Debbie W. Leung
Seth Lloyd
机构
[1] IBM Almaden Research Center,
[2] Solid State and Photonics Laboratory,undefined
[3] Stanford University,undefined
[4] Edward L. Ginzton Laboratory,undefined
[5] Stanford University,undefined
[6] MIT Department of Mechanical Engineering,undefined
来源
Nature | 1998年 / 393卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum computers1,2,3,4,5 can in principle exploit quantum-mechanical effects to perform computations (such as factoring large numbers or searching an unsorted database) more rapidly than classical computers1,2,6,7,8. But noise, loss of coherence, and manufacturing problems make constructing large-scale quantum computers difficult9,10,11,12,13. Although ion traps and optical cavities offer promising experimental approaches14,15, no quantum algorithm has yet been implemented with these systems. Here we report the experimental realization of a quantum algorithm using a bulk nuclear magnetic resonance technique16,17,18, in which the nuclear spins act as ‘quantum bits’19. The nuclear spins are particularly suited to this role because of their natural isolation from the environment. Our simple quantum computer solves a purely mathematical problem in fewer steps than is possible classically, requiring fewer ‘function calls’ than a classical computer to determine the global properties of an unknown function.
引用
下载
收藏
页码:143 / 146
页数:3
相关论文
共 50 条
  • [31] Experimental realization of a signal transduction algorithm
    Slot, LAB
    Colpaert, FC
    JOURNAL OF THEORETICAL BIOLOGY, 1999, 200 (01) : 39 - 48
  • [32] Realization of a quantum algorithm using a trapped electron
    Ciaramicoli, G
    Marzoli, I
    Tombesi, P
    PHYSICAL REVIEW A, 2001, 63 (05): : 523071 - 523079
  • [33] Experimental Realization of a One-Way Quantum Computer Algorithm Solving Simon's Problem
    Tame, M. S.
    Bell, B. A.
    Di Franco, C.
    Wadsworth, W. J.
    Rarity, J. G.
    PHYSICAL REVIEW LETTERS, 2014, 113 (20)
  • [34] Experimental realization of quantum teleportation using coined quantum walks
    Chatterjee, Yagnik
    Devrari, Vipin
    Behera, Bikash K.
    Panigrahi, Prasanta K.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [35] Freezing a quantum magnet by repeated quantum interference: An experimental realization
    Hegde, Swathi S.
    Katiyar, Hemant
    Mahesh, T. S.
    Das, Arnab
    PHYSICAL REVIEW B, 2014, 90 (17)
  • [36] Experimental realization of quantum teleportation using coined quantum walks
    Yagnik Chatterjee
    Vipin Devrari
    Bikash K. Behera
    Prasanta K. Panigrahi
    Quantum Information Processing, 2020, 19
  • [37] Experimental Realization of a Deterministic Quantum Router with Superconducting Quantum Circuits
    Wang, Zhiling
    Wu, Yukai
    Bao, Zenghui
    Li, Yan
    Ma, Cheng
    Wang, Haiyan
    Song, Yipu
    Zhang, Hongyi
    Duan, Luming
    PHYSICAL REVIEW APPLIED, 2021, 15 (01)
  • [38] Experimental realization of entangled qutrits for quantum communication
    Thew, R
    Acín, A
    Zbinden, H
    Gisin, N
    QUANTUM INFORMATION & COMPUTATION, 2004, 4 (02) : 93 - 101
  • [39] EXPERIMENTAL REALIZATION OF QUANTUM FIBEROPTIC COUPLING CHANNEL
    GALKIN, SL
    KOKOSIISKA, MB
    MINKOV, BI
    YURKINA, AY
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1994, 20 (19): : 10 - 13
  • [40] Experimental realization of entanglement concentration and a quantum repeater
    Zhao, Z
    Yang, T
    Chen, YA
    Zhang, AN
    Pan, JW
    PHYSICAL REVIEW LETTERS, 2003, 90 (20)