The Combined Effect of Al2O3 Nanofluid and Coiled Wire Inserts in a Flat-Plate Solar Collector on Heat Transfer, Thermal Efficiency and Environmental CO2 Characteristics

被引:0
|
作者
B. Saleh
L. Syam Sundar
Ayman A. Aly
E. Venkata Ramana
K. V. Sharma
Asif Afzal
Yasser Abdelrhman
Antonio C. M. Sousa
机构
[1] Taif University,Mechanical Engineering Department, College of Engineering
[2] University of Aveiro,Department of Mechanical Engineering, Centre for Mechanical Technology and Automation (TEMA–UA)
[3] University of Aveiro,I3N, Department of Physics
[4] Jawaharlal Nehru Technological University-Hyderabad,Department of Mechanical Engineering
[5] P. A. College of Engineering,Department of Mechanical Engineering
[6] Assiut University,Department of Mechanical Engineering, Faculty of Engineering
关键词
Energy assessment; Environmental; Nanofluid; Wire coil inserts; Turbulator; Economic effect;
D O I
暂无
中图分类号
学科分类号
摘要
The present study experimentally investigated the thermal efficiency, collector area, weight, embodied energy, environmental CO2 emissions of Al2O3/water nanofluid flow in a flat-plate solar collector and with coiled wire turbulators. The experiments were performed at ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} that is equal to 0.1%, 0.2% and 0.3% and volume flow rate from 120 to 300 L/h. Results indicate that the collector thermal efficiency increased with the increase of particle volume loadings and volume flow rates. The thermal efficiency of the collector with water circulate is 53%, whereas it is enhanced to 65% at ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid, and it is further enhanced to 77% for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid with 10-mm coiled wire insert in a collector tube at a volume flow rate of 300 L/h. The collector area is declined to 8.66% (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.1%), 14% (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.2%) and 18.66% (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3%) for nanofluids. The collector area is further reduced to 31.33% for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid and with a coiled wire pitch of 10 mm. The materials embodied energy is decreased to 1144.36 MJ for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid, and it is further reduced to 1022.6 MJ with the use of a wire coil pitch of 10 mm, but for water, it is 1451.4 MJ. The Nusselt number is increased to 23.22% with ϕ = 0.3% nanofluid, and it further enhanced to 53.56% at same particle loadings and coiled wire pitch of 10 mm over the water data.
引用
收藏
页码:9187 / 9214
页数:27
相关论文
共 50 条
  • [31] Effect of Al2O3 and MgO nanofluids in heat pipe solar collector for improved efficiency
    Rangabashiam, Devaraj
    Ramachandran, S.
    Sekar, Manigandan
    APPLIED NANOSCIENCE, 2021, 13 (1) : 595 - 604
  • [32] Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe
    Senthil, R.
    Ratchagaraja, D.
    Silambarasan, R.
    Manikandan, R.
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (02) : 1063 - 1068
  • [33] Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector
    Said, Z.
    Sajid, M. H.
    Alim, M. A.
    Saidur, R.
    Rahim, N. A.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 48 : 99 - 107
  • [34] Enhanced heat transfer with Al2O3 nanofluids for solar collector purposes
    Kufner, Andreea
    Filip, Viviana
    Romanian Review Precision Mechanics, Optics and Mechatronics, 2013, (43): : 131 - 137
  • [35] AN EXPERIMENTAL STUDY OF THE MASS FLOW RATES EFFECT ON FLAT-PLATE SOLAR WATER HEATER PERFORMANCE USING AL2O3/WATER NANOFLUID
    Prakasam, Michael Joseph Stalin
    Thottipalayam Vellingiri, Arjunan
    Nataraj, Sadanandam
    THERMAL SCIENCE, 2017, 21 : S379 - S388
  • [36] Experimental analysis on the influence of internal finning on the efficiency of a solar flat plate collector using Al2O3 nanoparticles
    Munuswamy, Dinesh Babu
    Madhavan, Venkata Ramanan
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2015, 40 (03) : 185 - 192
  • [37] The effect of nanoparticle shape on the thermal resistance of a flat-plate heat pipe using acetone-based Al2O3 nanofluids
    Kim, Hyun Jin
    Lee, Seung-Hyun
    Kim, Soo Bin
    Jang, Seok Pil
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 92 : 572 - 577
  • [38] Experimental Study on the Thermal Performance and Heat Transfer Characteristics of Solar Parabolic Trough Collector Using Al2O3 Nanofluids
    Subramani, J.
    Nagarajan, P. K.
    Wongwises, Somchai
    El-Agouz, S. A.
    Sathyamurthy, Ravishankar
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2018, 37 (03) : 1149 - 1159
  • [39] Enhanced Thermal Performance of Ionic Liquid-Al2O3 Nanofluid as Heat Transfer Fluid for Solar Collector
    Paul, Titan C.
    Morshed, A. K. M. M.
    Fox, Elise B.
    Visser, Ann E.
    Bridges, Nicholas J.
    Khan, Jamil A.
    PROCEEDINGS OF THE ASME 7TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2013, 2014,
  • [40] HEAT TRANSFER ENHANCEMENT IN A HELICALLY COILED CONVERGENT AND DIVERGENT TUBE HEAT EXCHANGER WITH Al2O3 NANOFLUID
    Shankar, Nandhakumar
    Perumalsamy, Sethusundaram Parambakkattur
    Karur, Mohanraj Chandran
    THERMAL SCIENCE, 2023, 27 (6A): : 4707 - 4718