The Combined Effect of Al2O3 Nanofluid and Coiled Wire Inserts in a Flat-Plate Solar Collector on Heat Transfer, Thermal Efficiency and Environmental CO2 Characteristics

被引:0
|
作者
B. Saleh
L. Syam Sundar
Ayman A. Aly
E. Venkata Ramana
K. V. Sharma
Asif Afzal
Yasser Abdelrhman
Antonio C. M. Sousa
机构
[1] Taif University,Mechanical Engineering Department, College of Engineering
[2] University of Aveiro,Department of Mechanical Engineering, Centre for Mechanical Technology and Automation (TEMA–UA)
[3] University of Aveiro,I3N, Department of Physics
[4] Jawaharlal Nehru Technological University-Hyderabad,Department of Mechanical Engineering
[5] P. A. College of Engineering,Department of Mechanical Engineering
[6] Assiut University,Department of Mechanical Engineering, Faculty of Engineering
关键词
Energy assessment; Environmental; Nanofluid; Wire coil inserts; Turbulator; Economic effect;
D O I
暂无
中图分类号
学科分类号
摘要
The present study experimentally investigated the thermal efficiency, collector area, weight, embodied energy, environmental CO2 emissions of Al2O3/water nanofluid flow in a flat-plate solar collector and with coiled wire turbulators. The experiments were performed at ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} that is equal to 0.1%, 0.2% and 0.3% and volume flow rate from 120 to 300 L/h. Results indicate that the collector thermal efficiency increased with the increase of particle volume loadings and volume flow rates. The thermal efficiency of the collector with water circulate is 53%, whereas it is enhanced to 65% at ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid, and it is further enhanced to 77% for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid with 10-mm coiled wire insert in a collector tube at a volume flow rate of 300 L/h. The collector area is declined to 8.66% (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.1%), 14% (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.2%) and 18.66% (ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3%) for nanofluids. The collector area is further reduced to 31.33% for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid and with a coiled wire pitch of 10 mm. The materials embodied energy is decreased to 1144.36 MJ for ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} = 0.3% nanofluid, and it is further reduced to 1022.6 MJ with the use of a wire coil pitch of 10 mm, but for water, it is 1451.4 MJ. The Nusselt number is increased to 23.22% with ϕ = 0.3% nanofluid, and it further enhanced to 53.56% at same particle loadings and coiled wire pitch of 10 mm over the water data.
引用
收藏
页码:9187 / 9214
页数:27
相关论文
共 50 条
  • [11] Experimental investigations on direct absorption solar flat plate collector using Al2O3 nanofluid
    Khatri, Rahul
    Jangid, Rajesh
    Tomar, Pranay Singh
    Sharma, Shyam Sunder
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2021, 18 (11-12) : 968 - 979
  • [12] Nanofluid turbulent forced convection through a solar flat plate collector with Al2O3 nanoparticles
    Farshad, Seyyed Ali
    Sheikholeslami, M.
    Hosseini, Seyed Hossein
    Shafee, Ahmad
    Li, Zhixiong
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2019, 25 (11): : 4237 - 4247
  • [13] Nanofluid turbulent forced convection through a solar flat plate collector with Al2O3 nanoparticles
    Seyyed Ali Farshad
    M. Sheikholeslami
    Seyed Hossein Hosseini
    Ahmad Shafee
    Zhixiong Li
    Microsystem Technologies, 2019, 25 : 4237 - 4247
  • [14] NUMERICAL INVESTIGATION OF CONJUGATE COMBINED CONVECTIVE HEAT TRANSFER FOR INTERNAL LAMINAR FLOW OF AL2O3/WATER NANOFLUID THROUGH TUBE - FLAT PLATE SOLAR COLLECTOR
    Mahmoud, Mahmoud Sh
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2021, 16 (03): : 2378 - 2393
  • [15] Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector
    Bazdidi-Tehrani, Farzad
    Khabazipur, Arash
    Vasefi, Seyed Iman
    RENEWABLE ENERGY, 2018, 122 : 406 - 418
  • [16] Potential of Size Reduction of Flat-plate Solar Collectors When Applying Al2O3 Nanofluid
    Faizal, M.
    Saidur, R.
    Mekhilef, S.
    NANOSCIENCE, NANOTECHNOLOGY AND NANOENGINEERING, 2014, 832 : 149 - +
  • [17] An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector
    Yousefi, T.
    Shojaeizadeh, E.
    Veysi, F.
    Zinadini, S.
    SOLAR ENERGY, 2012, 86 (02) : 771 - 779
  • [18] Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts
    Sundar, L. Syam
    Kirubeil, A.
    Punnaiah, V
    Singh, Manoj K.
    Sousa, Antonio C. M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 422 - 435
  • [19] Experimental and numerical investigations on the effect of Al2O3/TiO2 H2O nanofluids on thermal efficiency of the flat plate solar collector
    Farajzadeh, Ehsan
    Movahed, Saeid
    Hosseini, Reza
    RENEWABLE ENERGY, 2018, 118 : 122 - 130
  • [20] Amplifying thermal performance of solar flat plate collector by Al2O3/ Cu/ MWCNT/SiO2 mono and hybrid nanofluid
    Sathish, T.
    Giri, Jayant
    Saravanan, R.
    Ubaidullah, Mohd
    Shangdiar, Sumarlin
    Iikela, Sioni
    Sithole, Thandiwe
    Amesho, Kassian T. T.
    APPLIED THERMAL ENGINEERING, 2024, 252