Parallel Split-Step Fourier Methods for the Coupled Nonlinear Schrödinger Type Equations

被引:0
|
作者
Thiab R. Taha
Xiangming Xu
机构
[1] Univeristy of Georgia,
来源
The Journal of Supercomputing | 2005年 / 32卷
关键词
split-step method; NLS; parallel algorithms; FFTW;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear Schrödinger type equations are of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrödinger equation.
引用
收藏
页码:5 / 23
页数:18
相关论文
共 50 条
  • [31] Global Attractor for a Class of Coupled Nonlinear Schrödinger Equations
    Li G.
    Zhu C.
    SeMA Journal, 2012, 60 (1) : 5 - 25
  • [32] Solitons in a coupled system of fractional nonlinear Schrödinger equations
    Zeng, Liangwei
    Belic, Milivoj R.
    Mihalache, Dumitru
    Li, Jiawei
    Xiang, Dan
    Zeng, Xuanke
    Zhu, Xing
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [33] Numerical Approximation of Solution for the Coupled Nonlinear Schr?dinger Equations
    Juan CHEN
    Lu-ming ZHANG
    ActaMathematicaeApplicataeSinica, 2017, 33 (02) : 435 - 450
  • [34] Periodic wavetrains for systems of coupled nonlinear Schrödinger equations
    Kwok W Chow
    Derek WC Lai
    Pramana, 2001, 57 : 937 - 952
  • [35] Standing waves for a coupled system of nonlinear Schrödinger equations
    Zhijie Chen
    Wenming Zou
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 183 - 220
  • [36] Numerical approximation of solution for the coupled nonlinear Schrödinger equations
    Juan Chen
    Lu-ming Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 435 - 450
  • [37] Analysis of the split-step Fourier algorithm for the solution of parabolic wave equations
    Tappert, FD
    Smith, KB
    Wolfson, MA
    THEORETICAL AND COMPUTATIONAL ACOUSTICS 2001, 2002, : 75 - 89
  • [38] Rogue waves of the coupled modified nonlinear Schr?dinger equations
    Hang, Chen
    Zhang, Hai-Qiang
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [39] Instability of multiple pulses in coupled nonlinear Schrödinger equations
    Department of Mathematics, Ohio State University, Columbus
    OH
    43210, United States
    不详
    RI
    02912, United States
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (05): : 5886 - 5892
  • [40] An efficient spline scheme of the coupled nonlinear Schrödinger equations
    Bin Lin
    Journal of Mathematical Chemistry, 2020, 58 : 1663 - 1679