Parallel Split-Step Fourier Methods for the Coupled Nonlinear Schrödinger Type Equations

被引:0
|
作者
Thiab R. Taha
Xiangming Xu
机构
[1] Univeristy of Georgia,
来源
The Journal of Supercomputing | 2005年 / 32卷
关键词
split-step method; NLS; parallel algorithms; FFTW;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear Schrödinger type equations are of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrödinger equation.
引用
收藏
页码:5 / 23
页数:18
相关论文
共 50 条
  • [21] SPLIT-STEP FOURIER MIGRATION
    STOFFA, PL
    FOKKEMA, JT
    FREIRE, RMD
    KESSINGER, WP
    GEOPHYSICS, 1990, 55 (04) : 410 - 421
  • [22] Standing Waves of the Coupled Nonlinear Schrdinger Equations
    Linlin Yang
    Gongming Wei
    Analysis in Theory and Applications, 2014, 30 (04) : 345 - 353
  • [23] Coupled nonlinear Schrödinger equations with harmonic potential
    Hezzi H.
    Nour M.M.
    Saanouni T.
    Arabian Journal of Mathematics, 2018, 7 (3) : 195 - 218
  • [24] Šilnikov manifolds in coupled nonlinear Schrödinger equations
    Haller, G.
    Menon, G.
    Rothos, V.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (03): : 175 - 185
  • [25] CONCENTRATION OF COUPLED CUBIC NONLINEAR SCHRDINGER EQUATIONS
    李晓光
    张健
    Applied Mathematics and Mechanics(English Edition), 2005, (10) : 117 - 122
  • [26] Numerical studies on Boussinesq-type equations via a split-step Fourier method
    Kong, Linghua
    Wang, Lan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (08) : 1768 - 1784
  • [27] Split-step forward methods for stochastic differential equations
    Wang, Peng
    Li, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) : 2641 - 2651
  • [28] Split-step Fourier methods applied to model nonlinear refractive effects in optically thick media
    Burzler, JM
    Hughes, S
    Wherrett, BS
    APPLIED PHYSICS B-LASERS AND OPTICS, 1996, 62 (04): : 389 - 397
  • [29] Multi-soliton solutions for the coupled nonlinear Schrödinger-type equations
    Gao-Qing Meng
    Yi-Tian Gao
    Xin Yu
    Yu-Jia Shen
    Yi Qin
    Nonlinear Dynamics, 2012, 70 : 609 - 617
  • [30] Conservative Fourier spectral scheme for the coupled Schrödinger–Boussinesq equations
    Junjie Wang
    Advances in Difference Equations, 2018