A chemo-ecologists' practical guide to compositional data analysis

被引:53
|
作者
Brueckner, Adrian [1 ]
Heethoff, Michael [1 ]
机构
[1] Tech Univ Darmstadt, Ecol Networks, Schnittspahnstr 3, D-64287 Darmstadt, Germany
关键词
Chemical ecology; Compositional data; Practical guide; Data mining; Ordination methods; Multivariate analyses; Oribatida; ARCHEGOZETES-LONGISETOSUS ACARI; STATISTICAL-ANALYSIS; HARVESTER ANTS; ORIBATID MITE; SPECIALIZATION; FOREST; REGRESSION; COMPOUND; SCENT; CUES;
D O I
10.1007/s00049-016-0227-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Compositional data are commonly used in chemical ecology to describe the biological role of chemical compounds in communication, defense or other behavioral modifications. Statistical analyses of compositional data, however, are challenging due to several constraints (e.g., constant sum constraint). We use an ontogenetic series of defensive gland secretions from larvae, three nymphal stages and adults of the oribatid model species Archegozetes longisetosus as a typical chemo-ecological data set to prepare a practical guide for compositional data analyses in chemical ecology. We compare various common and less common statistical and ordination methods to depict small quantitative and/or qualitative differences in compositional datasets: principal component analysis (PCA), non-metric multidimensional scaling (NMDS), multivariate statistical tests (Anderson's permutational multivariate analyses of variance = PERMANOVA; permutational analyses of multivariate dispersions = PERMDIPS), linear discriminant analysis (LDA), the data mining algorithm Random Forests, bipartite network analysis and dynamic range boxes (dynRB). We summarize which methods are suitable for different research questions and how data needs to be structured and pre-processed. Network analyses and dynamic range boxes are promising tools for analyzing compositional data beyond the "classical" methods and provide additional information.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [21] A practical guide to big data
    Smirnova, Ekaterina
    Ivanescu, Andrada
    Bai, Jiawei
    Crainiceanu, Ciprian M.
    STATISTICS & PROBABILITY LETTERS, 2018, 136 : 25 - 29
  • [22] PRACTICAL GUIDE TO DATA MAINTENANCE
    FELDMAN, S
    INFOSYSTEMS, 1979, 26 (10): : 135 - &
  • [23] Grassland vegetation sampling - a practical guide for sampling and data analysis
    Andrade, Bianca Ott
    Boldrini, Ilsi Iob
    Cadenazzi, Monica
    Pillar, Valerio D.
    Overbeck, Gerhard Ernst
    ACTA BOTANICA BRASILICA, 2019, 33 (04) : 786 - 795
  • [24] Doing Sociolinguistics. A practical guide to data collection and analysis
    Oancea, Costin-Valentin
    REVUE ROUMAINE DE LINGUISTIQUE-ROMANIAN REVIEW OF LINGUISTICS, 2016, 61 (02): : 223 - 226
  • [25] Compositional data analysis
    Reyment, Richard A.
    TERRA NOVA, 1989, 1 (01) : 29 - 34
  • [26] Compositional Data Analysis
    Greenacre, Michael
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 8, 2021, 2021, 8 : 271 - 299
  • [27] Compositional data analysis
    Barabesi, Lucio
    Sartorelli, Pietro
    OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2020, 77 (05) : 352 - 352
  • [28] DATA-ANALYSIS FOR THE HELPING PROFESSIONS - A PRACTICAL GUIDE - PILCHER,DM
    EPSTEIN, I
    SOCIAL WORK, 1992, 37 (03) : 270 - 271
  • [29] Meta-analysis of data from animal studies: A practical guide
    Vesterinen, H. M.
    Sena, E. S.
    Egan, K. J.
    Hirst, T. C.
    Churolov, L.
    Currie, G. L.
    Antonic, A.
    Howells, D. W.
    Macleod, M. R.
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 221 : 92 - 102
  • [30] From GC skews to wavelets: A gentle guide to the analysis of compositional asymmetries in genomic data
    Touchon, Marie
    Rocha, Eduardo P. C.
    BIOCHIMIE, 2008, 90 (04) : 648 - 659