Grassland vegetation sampling - a practical guide for sampling and data analysis

被引:6
|
作者
Andrade, Bianca Ott [1 ,5 ]
Boldrini, Ilsi Iob [1 ,2 ]
Cadenazzi, Monica [3 ]
Pillar, Valerio D. [4 ]
Overbeck, Gerhard Ernst [1 ,2 ]
机构
[1] Univ Fed Rio Grande do Sul, Programa Posgrad Bot, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Dept Bot, BR-91501970 Porto Alegre, RS, Brazil
[3] Univ Republ, Dept Biometria Estadist & Comp, Paysandu 60000, Uruguay
[4] Univ Fed Rio Grande do Sul, Dept Ecol, BR-91501970 Porto Alegre, RS, Brazil
[5] Univ Nebraska, Dept Agron & Hort, Lincoln, NE 68583 USA
关键词
non-forest ecosystems; plant community; phytosociological studies; quantitative analysis; releve; vegetation survey; MULTIVARIATE-ANALYSIS; HIGHLAND GRASSLANDS; PLANT COMMUNITY; BRAZIL; PSEUDOREPLICATION; ECOLOGY; BIOME; CONSERVATION; RESTORATION; PHENOLOGY;
D O I
10.1590/0102-33062019abb0160
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Grassland and savanna ecosystems are the original vegetation types of more than 30% of the Brazilian territory, but conservation and training of future professionals has largely focused on forests. In fact, no standard protocols exist for sampling grassland vegetation for environmental planning or licensing. Neglecting non-forest ecosystems may have deleterious consequences for the maintenance of biodiversity and the provisioning of ecosystem services. Herein, we provide practical guidelines on how to conceive and develop ecological studies of grassland vegetation for scientific, monitoring or technical purposes. Using examples mostly from southern Brazil, we explain and discuss the various components of the research process, from the question to be investigated to defining and implementing the sampling design, performing data analyses and presenting the results. Our guidelines should prove useful for training technicians and researchers working on grassland ecosystems and other non-forest ecosystems in Brazil and surrounding regions.
引用
收藏
页码:786 / 795
页数:10
相关论文
共 50 条
  • [1] Sampling with censored data: a practical guide
    Ramos, Pedro L.
    Guzman, Daniel C. F.
    Mota, Alex L.
    Saavedra, Daniel A.
    Rodrigues, Francisco A.
    Louzada, Francisco
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (18) : 4072 - 4106
  • [2] REGRESSION TREE ANALYSIS OF SATELLITE AND TERRAIN DATA TO GUIDE VEGETATION SAMPLING AND SURVEYS
    MICHAELSEN, J
    SCHIMEL, DS
    FRIEDL, MA
    DAVIS, FW
    DUBAYAH, RC
    JOURNAL OF VEGETATION SCIENCE, 1994, 5 (05) : 673 - 686
  • [3] Malliavin Weight Sampling: A Practical Guide
    Warren, Patrick B.
    Allen, Rosalind J.
    ENTROPY, 2014, 16 (01) : 221 - 232
  • [4] SAMPLING METHODS FOR ARTHROPODS IN THE VEGETATION LAYER OF GRASSLAND ECOSYSTEMS
    HAAS, V
    ZOOLOGISCHER ANZEIGER, 1980, 204 (5-6): : 319 - 330
  • [5] A Practical Guide to Experience-Sampling Procedures
    Tamlin Conner Christensen
    Lisa Feldman Barrett
    Eliza Bliss-Moreau
    Kirsten Lebo
    Cynthia Kaschub
    Journal of Happiness Studies, 2003, 4 (1) : 53 - 78
  • [6] A Practical Guide to Digital Holography and Generalized Sampling
    Kelly, D. P.
    Hennelly, B. M.
    McElhinney, C.
    Naughton', T. J.
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING II, 2008, 7072
  • [7] Transcervical chorionic villus sampling: a practical guide
    Stergiotou, Iosifina
    Borobio, Virginia
    Bennasar, Mar
    Gonce, Anna
    Mula, Raquel
    Nuruddin, Mohammed
    Soler, Anna
    Borrell, Antoni
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2016, 29 (08): : 1244 - 1251
  • [8] Practical guide to replica exchange transition interface sampling and forward flux sampling
    Hall, Steven W.
    Leines, Grisell Diaz
    Sarupria, Sapna
    Rogal, Jutta
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (20):
  • [9] Cover vs. biomass sampling in grassland vegetation plots
    Riedel, Susanne
    Widmer, Stefan
    Bringuier, Orane
    Dengler, Juergen
    TUEXENIA, 2024, (44):
  • [10] Representative sampling for reliable data analysis: Theory of Sampling
    Petersen, L
    Minkkinen, P
    Esbensen, KH
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 77 (1-2) : 261 - 277