A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation

被引:0
|
作者
Xilin Zhou
Weiling Dong
Hao Zhang
Robert E. Simpson
机构
[1] Singapore University of Technology and Design,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures.
引用
收藏
相关论文
共 50 条
  • [31] Sn tuned microstructure and phase-change characteristics of GeTe nanowires
    Zhang, Jie
    Yu, Hailin
    Wei, Fenfen
    Dong, Yaojun
    Shao, Zhenguang
    Liu, Yushen
    AIP ADVANCES, 2020, 10 (10)
  • [32] Phase Change Characteristics in GeTe-CuTe Pseudobinary Alloy Films
    Saito, Yuta
    Sutou, Yuji
    Koike, Junichi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (46): : 26973 - 26980
  • [33] Supercooling characteristics of phase change material particles within phase change emulsions
    Morimoto, Takashi
    Kawana, Yusuke
    Saegusa, Kaoru
    Kumano, Hiroyuki
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 99 : 1 - 7
  • [34] Unravelling the amorphous structure and crystallization mechanism of GeTe phase change memory materials
    Wintersteller, Simon
    Yarema, Olesya
    Kumaar, Dhananjeya
    Schenk, Florian M.
    Safonova, Olga V.
    Abdala, Paula M.
    Wood, Vanessa
    Yarema, Maksym
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [35] Carbon-doped GeTe: A promising material for Phase-Change Memories
    Beneventi, G. Betti
    Perniola, L.
    Sousa, V.
    Gourvest, E.
    Maitrejean, S.
    Bastien, J. C.
    Bastard, A.
    Hyot, B.
    Fargeix, A.
    Jahan, C.
    Nodin, J. F.
    Persico, A.
    Fantini, A.
    Blachier, D.
    Toffoli, A.
    Loubriat, S.
    Roule, A.
    Lhostis, S.
    Feldis, H.
    Reimbold, G.
    Billon, T.
    De Salvo, B.
    Larcher, L.
    Pavan, P.
    Bensahel, D.
    Mazoyer, P.
    Annunziata, R.
    Zuliani, P.
    Boulanger, F.
    SOLID-STATE ELECTRONICS, 2011, 65-66 : 197 - 204
  • [36] In-situ crystallization of GeTe\GaSb phase change memory stacked films
    Velea, A.
    Borca, C. N.
    Socol, G.
    Galca, A. C.
    Grolimund, D.
    Popescu, M.
    van Bokhoven, J. A.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (23)
  • [37] Chromium doped GeTe for low-power-consumption phase change memory
    Xue, Jianzhong
    Pei, Mingxu
    Wu, Weihua
    Zhu, Xiaoqin
    Zheng, Long
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2020, 92 (03):
  • [38] Electrical and heat conduction mechanisms of GeTe alloy for phase change memory application
    Lan, Rui
    Endo, Rie
    Kuwahara, Masashi
    Kobayashi, Yoshinao
    Susa, Masahiro
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (05)
  • [39] Electrical and heat conduction mechanisms of GeTe alloy for phase change memory application
    Lan, R., 1600, American Institute of Physics Inc. (112):
  • [40] Unravelling the amorphous structure and crystallization mechanism of GeTe phase change memory materials
    Simon Wintersteller
    Olesya Yarema
    Dhananjeya Kumaar
    Florian M. Schenk
    Olga V. Safonova
    Paula M. Abdala
    Vanessa Wood
    Maksym Yarema
    Nature Communications, 15