Discrete Miura Opers and Solutions of the Bethe Ansatz Equations

被引:0
|
作者
Evgeny Mukhin
Alexander Varchenko
机构
[1] Indiana University Purdue University Indianapolis,Department of Mathematical Sciences
[2] University of North Carolina at Chapel Hill,Department of Mathematics
来源
关键词
Neural Network; Statistical Physic; Complex System; Rational Function; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions of the Bethe ansatz equations associated to the XXX model of a simple Lie algebra [inline-graphic not available: see fulltext] come in families called the populations. We prove that a population is isomorphic to the flag variety of the Langlands dual Lie algebra [inline-graphic not available: see fulltext] The proof is based on the correspondence between the solutions of the Bethe ansatz equations and special difference operators which we call the discrete Miura opers. The notion of a discrete Miura oper is one of the main results of the paper.
引用
收藏
页码:565 / 588
页数:23
相关论文
共 50 条
  • [21] Matrix difference equations and a nested Bethe ansatz
    Babujian, H
    Karowski, M
    Zapletal, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (18): : 6425 - 6450
  • [22] The supersymmetric U model and Bethe ansatz equations
    Hibberd, KE
    Links, JR
    Gould, MD
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 1042 - 1046
  • [23] Finite Type Modules and Bethe Ansatz Equations
    Feigin, Boris
    Jimbo, Michio
    Miwa, Tetsuji
    Mukhin, Eugene
    ANNALES HENRI POINCARE, 2017, 18 (08): : 2543 - 2579
  • [24] Finite Type Modules and Bethe Ansatz Equations
    Boris Feigin
    Michio Jimbo
    Tetsuji Miwa
    Eugene Mukhin
    Annales Henri Poincaré, 2017, 18 : 2543 - 2579
  • [25] Landau levels from the Bethe Ansatz equations
    Hoshi, K
    Hatsugai, Y
    PHYSICAL REVIEW B, 2000, 61 (07) : 4409 - 4412
  • [26] The thermodynamic Bethe Ansatz and a connection with Painleve equations
    Tracy, CA
    Widom, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (1-2): : 69 - 74
  • [27] Strong coupling limit of Bethe ansatz equations
    Kostov, Ivan
    Serban, Didina
    Volin, Dmytro
    NUCLEAR PHYSICS B, 2008, 789 (03) : 413 - 451
  • [28] EXPLICIT SOLUTIONS OF THE BETHE-ANSATZ EQUATIONS FOR BLOCH ELECTRONS IN A MAGNETIC-FIELD
    HATSUGAI, Y
    KOHMOTO, M
    WU, YS
    PHYSICAL REVIEW LETTERS, 1994, 73 (08) : 1134 - 1137
  • [29] On Solutions of the Bethe Ansatz for the Quantum KdV Model
    Conti, Riccardo
    Masoero, Davide
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 335 - 390
  • [30] On Solutions of the Bethe Ansatz for the Quantum KdV Model
    Riccardo Conti
    Davide Masoero
    Communications in Mathematical Physics, 2023, 402 : 335 - 390