Gorenstein AC-projective complexes

被引:0
|
作者
James Gillespie
机构
[1] Ramapo College of New Jersey,School of Theoretical and Applied Science
关键词
Abelian model category; Gorenstein AC-projective; Ding-Chen ring; 18G25; 55U35;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be any ring with identity and Ch(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ch (R)$$\end{document} the category of chain complexes of (left) R-modules. We show that the Gorenstein AC-projective chain complexes of [1] are the cofibrant objects of an abelian model structure on Ch(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ch (R)$$\end{document}. The model structure is cofibrantly generated and is projective in the sense that the trivially cofibrant objects are the categorically projective chain complexes. We show that when R is a Ding-Chen ring, that is, a two-sided coherent ring with finite self FP-injective dimension, then the model structure is finitely generated, and so its homotopy category is compactly generated. Constructing this model structure also shows that every chain complex over any ring has a Gorenstein AC-projective precover. These are precisely Gorenstein projective (in the usual sense) precovers whenever R is either a Ding-Chen ring, or, a ring for which all level (left) R-modules have finite projective dimension. For a general (right) coherent ring R, the Gorenstein AC-projective complexes coincide with the Ding projective complexes of [31] and so provide such precovers in this case.
引用
收藏
页码:769 / 791
页数:22
相关论文
共 50 条
  • [41] Gorenstein ℚ-homology projective planes
    DongSeon Hwang
    JongHae Keum
    Hisanori Ohashi
    Science China Mathematics, 2015, 58 : 501 - 512
  • [42] A note on Gorenstein projective modules
    Wu, Dejun
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1300 - 1303
  • [43] Level and Gorenstein projective dimension
    Awadalla, Laila
    Marley, Thomas
    JOURNAL OF ALGEBRA, 2022, 609 : 606 - 618
  • [44] On the existence of Gorenstein projective precovers
    Asadollahi, J.
    Dehghanpour, T.
    Hafezi, R.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 257 - 264
  • [45] A Characterization of Gorenstein Projective Modules
    Wang, Jian
    Liang, Li
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (04) : 1420 - 1432
  • [46] (sic)-Gorenstein Projective Dimensions
    Wang, Jie
    Xu, Xiaowei
    Zhao, Zhibing
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (04) : 398 - 414
  • [47] On χ-Gorenstein projective dimensions and precovers
    Yu, Bin
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (05) : 1768 - 1782
  • [48] On gorenstein injective and projective comodules
    Pan, Q. X.
    Li, Q.
    MATHEMATICAL NOTES, 2013, 94 (1-2) : 255 - 265
  • [49] On gorenstein injective and projective comodules
    Q. X. Pan
    Q. Li
    Mathematical Notes, 2013, 94 : 255 - 265
  • [50] GORENSTEIN PROJECTIVE DIMENSIONS OF COMPLEXES UNDER BASE CHANGE WITH RESPECT TO A SEMIDUALIZING MODULE
    Zhang, Chunxia
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 497 - 505