Gorenstein AC-projective complexes

被引:0
|
作者
James Gillespie
机构
[1] Ramapo College of New Jersey,School of Theoretical and Applied Science
关键词
Abelian model category; Gorenstein AC-projective; Ding-Chen ring; 18G25; 55U35;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be any ring with identity and Ch(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ch (R)$$\end{document} the category of chain complexes of (left) R-modules. We show that the Gorenstein AC-projective chain complexes of [1] are the cofibrant objects of an abelian model structure on Ch(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ch (R)$$\end{document}. The model structure is cofibrantly generated and is projective in the sense that the trivially cofibrant objects are the categorically projective chain complexes. We show that when R is a Ding-Chen ring, that is, a two-sided coherent ring with finite self FP-injective dimension, then the model structure is finitely generated, and so its homotopy category is compactly generated. Constructing this model structure also shows that every chain complex over any ring has a Gorenstein AC-projective precover. These are precisely Gorenstein projective (in the usual sense) precovers whenever R is either a Ding-Chen ring, or, a ring for which all level (left) R-modules have finite projective dimension. For a general (right) coherent ring R, the Gorenstein AC-projective complexes coincide with the Ding projective complexes of [31] and so provide such precovers in this case.
引用
收藏
页码:769 / 791
页数:22
相关论文
共 50 条
  • [21] CARTAN-EILENBERG GORENSTEIN PROJECTIVE COMPLEXES
    Yang, Gang
    Liang, Li
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (01)
  • [22] Gorenstein Projective Complexes with Respect to Cotorsion Pairs
    Zhao, Renyu
    Ma, Pengju
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (01) : 117 - 129
  • [23] GORENSTEIN INJECTIVE AND PROJECTIVE COMPLEXES WITH RESPECT TO A SEMIDUALIZING MODULE
    Yang, Chunhua
    Liang, Li
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) : 3352 - 3364
  • [24] Approximations and adjoints for categories of complexes of Gorenstein projective modules
    Yang, Gang
    Ren, Wei
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 139 - 151
  • [25] n-Strongly Gorenstein Projective and Injective Complexes
    Selvaraj, C.
    Saravanan, R.
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 293 - 306
  • [26] Dimension of complexes related to special Gorenstein projective precovers
    Liu, Zhongkui
    Li, Jinlan
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 313 - 323
  • [27] Gorenstein projective and flat complexes over noetherian rings
    Enochs, E.
    Estrada, S.
    Iacob, A.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (07) : 834 - 851
  • [28] Gorenstein-projective and semi-Gorenstein-projective modules
    Ringel, Claus Michael
    Zhang, Pu
    ALGEBRA & NUMBER THEORY, 2020, 14 (01) : 1 - 36
  • [29] -Gorenstein projective, -Gorenstein injective and -Gorenstein flat modules
    Zhang, Zhen
    Zhu, Xiaosheng
    Yan, Xiaoguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 115 - 124
  • [30] Dimension of complexes related to special Gorenstein projective precovers(II)
    Liu, Zhongkui
    Pengju, Ma
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1308 - 1319