Abelian model category;
Gorenstein AC-projective;
Ding-Chen ring;
18G25;
55U35;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let R be any ring with identity and Ch(R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ Ch (R)$$\end{document} the category of chain complexes of (left) R-modules. We show that the Gorenstein AC-projective chain complexes of [1] are the cofibrant objects of an abelian model structure on Ch(R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ Ch (R)$$\end{document}. The model structure is cofibrantly generated and is projective in the sense that the trivially cofibrant objects are the categorically projective chain complexes. We show that when R is a Ding-Chen ring, that is, a two-sided coherent ring with finite self FP-injective dimension, then the model structure is finitely generated, and so its homotopy category is compactly generated. Constructing this model structure also shows that every chain complex over any ring has a Gorenstein AC-projective precover. These are precisely Gorenstein projective (in the usual sense) precovers whenever R is either a Ding-Chen ring, or, a ring for which all level (left) R-modules have finite projective dimension. For a general (right) coherent ring R, the Gorenstein AC-projective complexes coincide with the Ding projective complexes of [31] and so provide such precovers in this case.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Hu, Jiangsheng
Geng, Yuxian
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Geng, Yuxian
Jiang, Qinghua
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China