Classifying Integrable Egoroff Hydrodynamic Chains

被引:0
|
作者
M. V. Pavlov
机构
[1] Loughborough University,
来源
关键词
hydrodynamic chains and lattices; Egoroff integrable systems; dispersionless Hirota equations; tau function; (2+1)-dimensional dispersionless equations; Chazy equation; theta function;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of Egoroff hydrodynamic chains. We show how they are related to integrable (2+1)-dimensional equations of hydrodynamic type. We classify these equations in the simplest case. We find (2+1)-dimensional equations that are not just generalizations of the already known Khokhlov–Zabolotskaya and Boyer–Finley equations but are much more involved. These equations are parameterized by theta functions and by solutions of the Chazy equations. We obtain analogues of the dispersionless Hirota equations.
引用
收藏
页码:45 / 58
页数:13
相关论文
共 50 条
  • [21] Integrable models of coupled Heisenberg chains
    Frahm, H
    Rodenbeck, C
    EUROPHYSICS LETTERS, 1996, 33 (01): : 47 - 52
  • [22] On exact overlaps in integrable spin chains
    Jiang, Yunfeng
    Pozsgay, Balazs
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [23] Integrable spin chains with random interactions
    Essler, Fabian H. L.
    van den Berg, I. Rianne
    Gritsev, Vladimir
    PHYSICAL REVIEW B, 2018, 98 (02)
  • [24] Cluster integrable systems and spin chains
    A. Marshakov
    M. Semenyakin
    Journal of High Energy Physics, 2019
  • [25] THERMODYNAMICS OF INTEGRABLE CHAINS WITH ALTERNATING SPINS
    DEVEGA, HJ
    MEZINCESCU, L
    NEPOMECHIE, RI
    PHYSICAL REVIEW B, 1994, 49 (18): : 13223 - 13226
  • [26] Cluster integrable systems and spin chains
    Marshakov, A.
    Semenyakin, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [27] Integrable spin chains and the Clifford group
    Jones, Nick G.
    Linden, Noah
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (10)
  • [28] Integrable spin chains and scattering amplitudes
    Bartels, J.
    Lipatov, L. N.
    Prygarin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (45)
  • [29] Integrable multiparametric quantum spin chains
    Foerster, A.
    Links, J.
    Roditi, I.
    Journal of Physics A: Mathematical and General, 31 (02):
  • [30] Boundary conditions for integrable discrete chains
    Habibullin, IT
    Kazakova, TG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10369 - 10376