A Note on Generalized Lagrangians of Non-uniform Hypergraphs

被引:0
|
作者
Yuejian Peng
Biao Wu
Yuping Yao
机构
[1] Hunan University,Institute of Mathematics
[2] Hunan University,College of Mathematics and Econometrics
来源
Order | 2017年 / 34卷
关键词
Lagrangians of hypergraphs; Extremal problems in hypergraphs;
D O I
暂无
中图分类号
学科分类号
摘要
Set A⊂ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\subset {\mathbb N}$\end{document} is less than B⊂ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B\subset {\mathbb N}$\end{document} in the colex ordering if max(A△B)∈B. In 1980’s, Frankl and Füredi conjectured that the r-uniform graph with m edges consisting of the first m sets of ℕ(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb N}^{(r)}$\end{document} in the colex ordering has the largest Lagrangian among all r-uniform graphs with m edges. A result of Motzkin and Straus implies that this conjecture is true for r=2. This conjecture seems to be challenging even for r=3. For a hypergraph H=(V,E), the set T(H)={|e|:e∈E} is called the edge type of H. In this paper, we study non-uniform hypergraphs and define L(H) a generalized Lagrangian of a non-uniform hypergraph H in which edges of different types have different weights. We study the following two questions: 1. Let H be a hypergraph with m edges and edge type T. Let Cm,T denote the hypergraph with edge type T and m edges formed by taking the first m sets with cardinality in T in the colex ordering. Does L(H)≤L(Cm,T) hold? If T={r}, then this question is the question by Frankl and Füredi. 2. Given a hypergraph H, find a minimum subhypergraph G of H such that L(G) = L(H). A result of Motzkin and Straus gave a complete answer to both questions if H is a graph. In this paper, we give a complete answer to both questions for {1,2}-hypergraphs. Regarding the first question, we give a result for {1,r1,r2,…,rl}-hypergraph. We also show the connection between the generalized Lagrangian of {1,r1,r2,⋯ ,rl}-hypergraphs and {r1,r2,⋯ ,rl}-hypergraphs concerning the second question.
引用
收藏
页码:9 / 21
页数:12
相关论文
共 50 条
  • [21] On Motzkin-Straus type results for non-uniform hypergraphs
    Tang, Qingsong
    Peng, Yuejian
    Zhang, Xiangde
    Zhao, Cheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 504 - 521
  • [22] Convex hulls of point-sets and non-uniform hypergraphs
    Lefmann, Hanno
    Algorithmic Aspects in Information and Management, Proceedings, 2007, 4508 : 285 - 295
  • [23] Some Motzkin–Straus type results for non-uniform hypergraphs
    Ran Gu
    Xueliang Li
    Yuejian Peng
    Yongtang Shi
    Journal of Combinatorial Optimization, 2016, 31 : 223 - 238
  • [24] A Note on Packing of Uniform Hypergraphs
    Konarski, Jerzy
    Wozniak, Mariusz
    Zak, Andrzej
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1383 - 1388
  • [25] A NOTE ON CAPILLARY INVASION IN NON-UNIFORM CHANNELS
    Hyvaluoma, Jari
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (12): : 1903 - 1909
  • [26] NOTE ON AN AIRFOIL IN A SLIGHTLY NON-UNIFORM STREAM
    ACOSTA, AJ
    MANI, R
    APPLIED SCIENTIFIC RESEARCH, 1967, 18 (01): : 21 - &
  • [27] NOTE ON PEAK LOADS AND NON-UNIFORM COSTS
    CREW, MA
    KLEINDORFER, PR
    ECONOMIC JOURNAL, 1970, 80 (318): : 422 - 423
  • [28] NOTE ON RAYLEIGH METHOD AND THE NON-UNIFORM STRUT
    LANG, HA
    QUARTERLY OF APPLIED MATHEMATICS, 1948, 5 (04) : 510 - 511
  • [29] A note on non-uniform points for projections of hypersurfaces
    Cifani M.G.
    Moschetti R.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (1) : 117 - 128
  • [30] NOTE ON INSTABILITY OF A NON-UNIFORM VORTEX SHEET
    HOCKING, LM
    JOURNAL OF FLUID MECHANICS, 1965, 21 : 333 - &