Convex hulls of point-sets and non-uniform hypergraphs

被引:0
|
作者
Lefmann, Hanno [1 ]
机构
[1] TU Chemnitz, Fak Informat, D-09107 Chemnitz, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For fixed integers k >= 3 and hypergraphs g on N vertices, which contain edges of cardinalities at most k, and are uncrowded, i.e., do not contain cycles of lengths 2, 3, or 4, and with average degree for the i-element edges bounded by O(Ti-1 center dot (In T)((k-i)/(k-1))), i = 3,...,k, for some number T >= 1, we show that the independence number alpha(g) satisfies alpha(g) = Omega((N vertical bar T) center dot (In T)(1/) (1(k-1))). Moreover, an independent set I of size vertical bar I vertical bar = Omega((N vertical bar T) center dot (In T)(1/(k-1))) can be found deterministically in polynomial time. This extends a result of Ajtai, Komlos, Pintz, Spencer and Szemeredi for uncrwoded uniform hypergraphs. We apply this result to a variant of Heilbronn's problem on the minimum area of the convex hull of small sets of points among n points in the unit square [0, 1](2).
引用
收藏
页码:285 / 295
页数:11
相关论文
共 50 条
  • [1] Affine invariant comparison of point-sets using convex hulls and Hausdorff distances
    Gope, C.
    Kehtarnavaz, N.
    [J]. PATTERN RECOGNITION, 2007, 40 (01) : 309 - 320
  • [2] Non-Uniform Hypergraphs
    Shirdel, G. H.
    Mortezaee, A.
    Golpar-Raboky, E.
    [J]. IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (03): : 161 - 177
  • [3] Covering non-uniform hypergraphs
    Boros, E
    Caro, Y
    Füredi, Z
    Yuster, R
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) : 270 - 284
  • [4] Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
    Guo, Jin-Li
    Zhu, Xin-Yun
    Suo, Qi
    Forrest, Jeffrey
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [5] Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
    Jin-Li Guo
    Xin-Yun Zhu
    Qi Suo
    Jeffrey Forrest
    [J]. Scientific Reports, 6
  • [6] Efficient reconstruction from non-uniform point sets
    Vucini, Erald
    Moeller, Torsten
    Groeller, M. Eduard
    [J]. VISUAL COMPUTER, 2008, 24 (7-9): : 555 - 563
  • [7] Efficient reconstruction from non-uniform point sets
    Erald Vuçini
    Torsten Möller
    M. Eduard Gröller
    [J]. The Visual Computer, 2008, 24 : 555 - 563
  • [8] CONVEX HULLS OF PERTURBED RANDOM POINT SETS
    Calka, Pierre
    Yukich, J. E.
    [J]. ANNALS OF APPLIED PROBABILITY, 2021, 31 (04): : 1598 - 1632
  • [9] Berge cycles in non-uniform hypergraphs
    Furedi, Zoltan
    Kostochka, Alexandr
    Luo, Ruth
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 13
  • [10] Subgraphs in Non-uniform Random Hypergraphs
    Dewar, Megan
    Healy, John
    Perez-Gimenez, Xavier
    Pralat, Pawel
    Proos, John
    Reiniger, Benjamin
    Ternovsky, Kirill
    [J]. ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2016, 2016, 10088 : 140 - 151