On Generating Discrete Orthogonal Bivariate Polynomials

被引:0
|
作者
Marko Huhtanen
Rasmus Munk Larsen
机构
[1] Stanford University,SCCM program, Computer Science Department
[2] Stanford University,SCCM program, Computer Science Department, and SOI
来源
BIT Numerical Mathematics | 2002年 / 42卷
关键词
Lanczos algorithm; bivariate polynomial; slowly growing length of the recurrence; curve fitting; least squares approximation; bivariate interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present an algorithm for recursively generating orthogonal bivariate polynomials on a discrete set S ⊂ ∝2. For this purpose we employ commuting pairs of real symmetric matrices H, K ∈ ∝n×n to obtain, in a certain sense, a two dimensional Hermitian Lanczos method. The resulting algorithm relies on a recurrence having a slowly growing length. Practical implementation issues an applications are considered. The method can be generalized to compute orthogonal polynomials depending on an arbitrary number of variables.
引用
收藏
页码:393 / 407
页数:14
相关论文
共 50 条
  • [31] Generating Some Semiclassical Orthogonal Polynomials
    Sghaier, Mabrouk
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 168 - 176
  • [32] UNIFIED STRUCTURE FOR GENERATING ORTHOGONAL POLYNOMIALS
    MILIC, MM
    SIMIC, PD
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1987, 62 (04) : 633 - 635
  • [33] Bilinear generating functions for orthogonal polynomials
    Koelink, HT
    Van der Jeugt, J
    CONSTRUCTIVE APPROXIMATION, 1999, 15 (04) : 481 - 497
  • [34] Fourier Transforms of Some Finite Bivariate Orthogonal Polynomials
    Guldogan Lekesiz, Esra
    Aktas, Rabia
    Masjed-Jamei, Mohammad
    SYMMETRY-BASEL, 2021, 13 (03):
  • [35] Three Term Relations for a Class of Bivariate Orthogonal Polynomials
    Marriaga, Misael
    Perez, Teresa E.
    Pinar, Miguel A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [36] Bivariate generating functions for Rogers-Szego polynomials
    Cao, Jian
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 2209 - 2216
  • [37] Three Term Relations for a Class of Bivariate Orthogonal Polynomials
    Misael Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2017, 14
  • [38] GENERATING FUNCTIONS FOR THE GENERALIZED BIVARIATE FIBONACCI AND LUCAS POLYNOMIALS
    Erkus-Duman, Esra
    Tuglu, Naim
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (05) : 815 - 821
  • [39] Some families of generating functions for a class of bivariate polynomials
    Ozergin, Emine
    Ozarslan, Mehmet A.
    Srivastava, H. M.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (7-8) : 1113 - 1120
  • [40] From Krall discrete orthogonal polynomials to Krall polynomials
    Duran, Antonio J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 888 - 900