On Generating Discrete Orthogonal Bivariate Polynomials

被引:0
|
作者
Marko Huhtanen
Rasmus Munk Larsen
机构
[1] Stanford University,SCCM program, Computer Science Department
[2] Stanford University,SCCM program, Computer Science Department, and SOI
来源
BIT Numerical Mathematics | 2002年 / 42卷
关键词
Lanczos algorithm; bivariate polynomial; slowly growing length of the recurrence; curve fitting; least squares approximation; bivariate interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present an algorithm for recursively generating orthogonal bivariate polynomials on a discrete set S ⊂ ∝2. For this purpose we employ commuting pairs of real symmetric matrices H, K ∈ ∝n×n to obtain, in a certain sense, a two dimensional Hermitian Lanczos method. The resulting algorithm relies on a recurrence having a slowly growing length. Practical implementation issues an applications are considered. The method can be generalized to compute orthogonal polynomials depending on an arbitrary number of variables.
引用
收藏
页码:393 / 407
页数:14
相关论文
共 50 条
  • [1] On generating discrete orthogonal bivariate polynomials
    Huhtanen, M
    Larsen, RM
    BIT NUMERICAL MATHEMATICS, 2002, 42 (02) : 393 - 407
  • [2] On Generating Orthogonal Polynomials for Discrete Measures
    Fischer, H. -J.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (01): : 183 - 205
  • [3] A PARALLEL ALGORITHM FOR GENERATING DISCRETE ORTHOGONAL POLYNOMIALS
    EGECIOGLU, O
    KOC, CK
    PARALLEL COMPUTING, 1992, 18 (06) : 649 - 659
  • [4] Classes of Bivariate Orthogonal Polynomials
    Ismail, Mourad E. H.
    Zhang, Ruiming
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [5] On bivariate classical orthogonal polynomials
    Marcellan, Francisco
    Marriaga, Misael
    Perez, Teresa E.
    Pinar, Miguel A.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 340 - 357
  • [6] ON GENERATING ORTHOGONAL POLYNOMIALS
    GAUTSCHI, W
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (03): : 289 - 317
  • [7] Bivariate orthogonal polynomials on triangular domains
    Rababah, Abedallah
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 78 (01) : 107 - 111
  • [8] Quadratic Decomposition of Bivariate Orthogonal Polynomials
    Amílcar Branquinho
    Ana Foulquié-Moreno
    Teresa E. Pérez
    Mediterranean Journal of Mathematics, 2023, 20
  • [9] Bivariate Koornwinder–Sobolev Orthogonal Polynomials
    Misael E. Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2021, 18
  • [10] Coherent pairs of bivariate orthogonal polynomials
    Marcellan, Francisco
    Marriaga, Misael E.
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF APPROXIMATION THEORY, 2019, 245 : 40 - 63