Fitting circles to scattered data: parameter estimates have no moments

被引:0
|
作者
N. Chernov
机构
[1] University of Alabama at Birmingham,Department of Mathematics
来源
Metrika | 2011年 / 73卷
关键词
Orthogonal regression; Errors-in-variables; Least squares fit; Circle fitting; Moments of estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear regression problem of fitting a circle (or a circular arc) to scattered data. We prove that under any standard assumptions on the statistical distribution of errors that are commonly adopted in the literature, the orthogonal regression estimators of the circle center and radius have infinite (absolute) moments. We also discuss methodological implications of this fact.
引用
收藏
页码:373 / 384
页数:11
相关论文
共 50 条
  • [31] Genesis, sequestration and survival of Plasmodium falciparum gametocytes:: parameter estimates from fitting a model to malariatherapy data
    Eichner, M
    Diebner, HH
    Molineaux, L
    Collins, WE
    Jeffery, GM
    Dietz, K
    TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 2001, 95 (05) : 497 - 501
  • [32] PROCEDURE FOR THE ANALYSIS OF COUNTERCURRENT DISTRIBUTION DATA .1. CURVE FITTING, PARAMETER ESTIMATES, AND ERROR ANALYSIS
    SHEPS, MC
    PURDY, RH
    ENGEL, LL
    ONCLEY, JL
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1960, 235 (11) : 3033 - 3041
  • [33] A Fitting Scattered Data Method based on the Criterion of Geometric Distance
    Yang, G.
    Liu, D.
    Wang, X.
    Advances in Modelling and Analysis A, 2012, 49 (1-2): : 15 - 27
  • [34] Scattered data fitting of Hermite type by a weighted meshless method
    Esmaeilbeigi, M.
    Chatrabgoun, O.
    Shafa, M.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (03) : 673 - 691
  • [35] NUMERICAL PROCEDURES FOR SURFACE FITTING OF SCATTERED DATA BY RADIAL FUNCTIONS
    DYN, N
    LEVIN, D
    RIPPA, S
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02): : 639 - 659
  • [36] Local hybrid approximation for scattered data fitting with bivariate splines
    Davydov, Oleg
    Morandi, Rossana
    Sestini, Alessandra
    COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (09) : 703 - 721
  • [37] Fitting triangular B-Splines to functional scattered data
    Pfeifle, R
    Seidel, HP
    COMPUTER GRAPHICS FORUM, 1996, 15 (01) : 15 - 23
  • [38] Scattered data fitting of Hermite type by a weighted meshless method
    M. Esmaeilbeigi
    O. Chatrabgoun
    M. Shafa
    Advances in Computational Mathematics, 2018, 44 : 673 - 691
  • [39] Large Scattered Data Fitting Based on Radial Basis Functions
    FENG Ren-zhong1
    2. Key Laboratory of Mathematics
    CADDM, 2007, (01) : 66 - 72
  • [40] Large Scattered Data Fitting Based on Radial Basis Functions
    FENG RenzhongXU Liang Department of Mathematics Beijing University of Aeronautics and Astronautics Beijing China Key Laboratory of Mathematics Informatics and Behavioral Semantics Ministry of Education
    Computer Aided Drafting,Design and Manufacturing, 2007, Design and Manufacturing.2007 (01) : 66 - 72