Fitting circles to scattered data: parameter estimates have no moments

被引:0
|
作者
N. Chernov
机构
[1] University of Alabama at Birmingham,Department of Mathematics
来源
Metrika | 2011年 / 73卷
关键词
Orthogonal regression; Errors-in-variables; Least squares fit; Circle fitting; Moments of estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear regression problem of fitting a circle (or a circular arc) to scattered data. We prove that under any standard assumptions on the statistical distribution of errors that are commonly adopted in the literature, the orthogonal regression estimators of the circle center and radius have infinite (absolute) moments. We also discuss methodological implications of this fact.
引用
收藏
页码:373 / 384
页数:11
相关论文
共 50 条
  • [21] Fitting circles and spheres to coordinate measuring machine data
    Gass, SI
    Witzgall, C
    Harary, HH
    INTERNATIONAL JOURNAL OF FLEXIBLE MANUFACTURING SYSTEMS, 1998, 10 (01): : 5 - 25
  • [23] Uniqueness of parameter estimates obtained from fitting free carrier absorption data of silicon wafers
    Wang, Qian
    Wei, Chenyang
    Gong, Lei
    Wang, Liguo
    Li, Yaqing
    Tan, Linqiu
    Wang, Wei
    AIP ADVANCES, 2021, 11 (10)
  • [24] USING INTERACTIVE GRAPHICS FOR FITTING SURFACES TO SCATTERED DATA
    BACCHELLIMONTEFUSCO, L
    CASCIOLA, G
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1984, 4 (07) : 43 - 45
  • [25] Scattered Noisy Data Fitting Using Bivariate Splines
    Zhou, Tianhe
    Li, Zhong
    CEIS 2011, 2011, 15
  • [26] A weighted least squares method for scattered data fitting
    Zhou, Tianhe
    Han, Danfu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (01) : 56 - 63
  • [27] Large scale least squares scattered data fitting
    Pereyra, V
    Scherer, G
    APPLIED NUMERICAL MATHEMATICS, 2003, 44 (1-2) : 225 - 239
  • [28] Least squares scattered data fitting by truncated SVDs
    Pereyra, V
    Scherer, G
    APPLIED NUMERICAL MATHEMATICS, 2002, 40 (1-2) : 73 - 86
  • [29] Fitting of 3D circles and ellipses using a parameter decomposition approach
    Jiang, XY
    Cheng, DC
    Fifth International Conference on 3-D Digital Imaging and Modeling, Proceedings, 2005, : 103 - 109
  • [30] Error estimates for scattered data interpolation on spheres
    Jetter, K
    Stöckler, J
    Ward, JD
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 733 - 747