Fitting circles to scattered data: parameter estimates have no moments

被引:0
|
作者
N. Chernov
机构
[1] University of Alabama at Birmingham,Department of Mathematics
来源
Metrika | 2011年 / 73卷
关键词
Orthogonal regression; Errors-in-variables; Least squares fit; Circle fitting; Moments of estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear regression problem of fitting a circle (or a circular arc) to scattered data. We prove that under any standard assumptions on the statistical distribution of errors that are commonly adopted in the literature, the orthogonal regression estimators of the circle center and radius have infinite (absolute) moments. We also discuss methodological implications of this fact.
引用
收藏
页码:373 / 384
页数:11
相关论文
共 50 条
  • [1] Fitting circles to scattered data: parameter estimates have no moments
    Chernov, N.
    METRIKA, 2011, 73 (03) : 373 - 384
  • [2] On fitting data for parameter estimates: residual weighting and data representation
    Singh, Piyush K.
    Soulages, Johannes M.
    Ewoldt, Randy H.
    RHEOLOGICA ACTA, 2019, 58 (6-7) : 341 - 359
  • [3] On fitting data for parameter estimates: residual weighting and data representation
    Piyush K. Singh
    Johannes M. Soulages
    Randy H. Ewoldt
    Rheologica Acta, 2019, 58 : 341 - 359
  • [4] Multivariate scattered data fitting
    LeMehaute, A
    Schumaker, LL
    Traversoni, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) : 1 - 4
  • [5] Scattered data fitting on the sphere
    Fasshauer, GE
    Schumaker, LL
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 117 - 166
  • [6] Circles and Ellipses Fitting to Measured Data
    Glavonjic, Milos
    FME TRANSACTIONS, 2007, 35 (04): : 165 - 172
  • [7] A few methods for fitting circles to data
    Umbach, D
    Jones, KN
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2003, 52 (06) : 1881 - 1885
  • [8] Fitting circles to data with correlated noise
    Chernov, N.
    Sapirstein, P. N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) : 5328 - 5337
  • [9] Scattered data fitting by minimal surface
    Hao, Yong-Xia
    Lu, Dianchen
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (03): : 331 - 340
  • [10] Scattered data fitting with bivariate splines
    Zeilfelder, F
    TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, 2002, : 243 - 286