Averaging Fluctuations in Resolvents of Random Band Matrices

被引:0
|
作者
László Erdős
Antti Knowles
Horng-Tzer Yau
机构
[1] University of Munich,Institute of Mathematics
[2] Harvard University,Department of Mathematics
来源
Annales Henri Poincaré | 2013年 / 14卷
关键词
White Vertex; Summation Index; Marked Vertex; Average Fluctuation; External Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of random matrices whose entries are centred random variables, independent up to a symmetry constraint. We establish precise high-probability bounds on the averages of arbitrary monomials in the resolvent matrix entries. Our results generalize the previous results of Erdős et al. (Ann Probab, arXiv:1103.1919, 2013; Commun Math Phys, arXiv:1103.3869, 2013; J Combin 1(2):15–85, 2011) which constituted a key step in the proof of the local semicircle law with optimal error bound in mean-field random matrix models. Our bounds apply to random band matrices and improve previous estimates from order 2 to order 4 in the cases relevant to applications. In particular, they lead to a proof of the diffusion approximation for the magnitude of the resolvent of random band matrices. This, in turn, implies new delocalization bounds on the eigenvectors. The applications are presented in a separate paper (Erdős et al., arXiv:1205.5669, 2013).
引用
收藏
页码:1837 / 1926
页数:89
相关论文
共 50 条
  • [41] Fluctuations of the Product of Random Matrices and Generalized Lyapunov Exponent
    Christophe Texier
    Journal of Statistical Physics, 2020, 181 : 990 - 1051
  • [42] Fluctuations and correlations for products of real asymmetric random matrices
    FitzGerald, Will
    Simm, Nick
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2308 - 2342
  • [43] Fluctuations of the Traces of Complex-Valued Random Matrices
    Noreddine, Salim
    SEMINAIRE DE PROBABILITES XLV, 2013, 2078 : 401 - 431
  • [44] Fluctuations of the Product of Random Matrices and Generalized Lyapunov Exponent
    Texier, Christophe
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (03) : 990 - 1051
  • [45] Manifestation of scale invariance in the spectral fluctuations of random matrices
    Landa, E.
    Morales, Irving O.
    Stransky, P.
    Frank, A.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [46] Random band and block matrices with correlated entries
    Catalano, Riccardo
    Fleermann, Michael
    Kirsch, Werner
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [47] Delocalization and Diffusion Profile for Random Band Matrices
    Erdos, Laszlo
    Knowles, Antti
    Yau, Horng-Tzer
    Yin, Jun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (01) : 367 - 416
  • [48] Scaling laws of complex band random matrices
    Zyczkowski, K
    Serwicki, R
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 99 (03): : 449 - 455
  • [49] SPECTRUM OF RANDOM TOEPLITZ MATRICES WITH BAND STRUCTURE
    Kargin, Vladislav
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 412 - 423
  • [50] The spectral edge of some random band matrices
    Sodin, Sasha
    ANNALS OF MATHEMATICS, 2010, 172 (03) : 2223 - 2251