Averaging Fluctuations in Resolvents of Random Band Matrices

被引:0
|
作者
László Erdős
Antti Knowles
Horng-Tzer Yau
机构
[1] University of Munich,Institute of Mathematics
[2] Harvard University,Department of Mathematics
来源
Annales Henri Poincaré | 2013年 / 14卷
关键词
White Vertex; Summation Index; Marked Vertex; Average Fluctuation; External Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of random matrices whose entries are centred random variables, independent up to a symmetry constraint. We establish precise high-probability bounds on the averages of arbitrary monomials in the resolvent matrix entries. Our results generalize the previous results of Erdős et al. (Ann Probab, arXiv:1103.1919, 2013; Commun Math Phys, arXiv:1103.3869, 2013; J Combin 1(2):15–85, 2011) which constituted a key step in the proof of the local semicircle law with optimal error bound in mean-field random matrix models. Our bounds apply to random band matrices and improve previous estimates from order 2 to order 4 in the cases relevant to applications. In particular, they lead to a proof of the diffusion approximation for the magnitude of the resolvent of random band matrices. This, in turn, implies new delocalization bounds on the eigenvectors. The applications are presented in a separate paper (Erdős et al., arXiv:1205.5669, 2013).
引用
收藏
页码:1837 / 1926
页数:89
相关论文
共 50 条
  • [31] Universality for a class of random band matrices
    Bourgade, Paul
    Erdos, Laszlo
    Yau, Horng-Tzer
    Yin, Jun
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 21 (03) : 739 - 800
  • [32] Summing graphs for random band matrices
    Silvestrov, PG
    PHYSICAL REVIEW E, 1997, 55 (06) : 6419 - 6432
  • [33] DENSITY OF EIGENVALUES OF RANDOM BAND MATRICES
    KUS, M
    LEWENSTEIN, M
    HAAKE, F
    PHYSICAL REVIEW A, 1991, 44 (05): : 2800 - 2808
  • [34] Density of States for Random Band Matrices
    M. Disertori
    H. Pinson
    T. Spencer
    Communications in Mathematical Physics, 2002, 232 : 83 - 124
  • [35] Two-band random matrices
    Kanzieper, E
    Freilikher, V
    PHYSICAL REVIEW E, 1998, 57 (06): : 6604 - 6611
  • [36] EIGENVECTOR STATISTICS OF RANDOM BAND MATRICES
    ZYCZKOWSKI, K
    LEWENSTEIN, M
    KUS, M
    IZRAILEV, F
    PHYSICAL REVIEW A, 1992, 45 (02): : 811 - 815
  • [37] Density of states for random band matrices
    Disertori, M
    Pinson, H
    Spencer, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 232 (01) : 83 - 124
  • [38] SCALING PROPERTIES OF BAND RANDOM MATRICES
    CASATI, G
    MOLINARI, L
    IZRAILEV, F
    PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1851 - 1854
  • [39] Band random matrices and quantum chaos
    Casati, G
    MULTIDIMENSIONAL STATISTICAL ANALYSIS AND THEORY OF RANDOM MATRICES, 1996, : 15 - 26
  • [40] Averaging signals with random time shift and time scale fluctuations
    Rix, H
    Meste, O
    Muhammad, W
    METHODS OF INFORMATION IN MEDICINE, 2004, 43 (01) : 13 - 16