Superfluid to Normal Fluid Phase Transition in the Bose Gas Trapped in Two-Dimensional Optical Lattices at Finite Temperature

被引:0
|
作者
M. O. C. Pires
E. J. V. de Passos
机构
[1] Universidade Federal do ABC,Centro de Ciências Naturais e Humanas
[2] Universidade de São Paulo,Instituto de Física
来源
关键词
Superfluid phase transition; Optical lattices; Bose-Hubbard model;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the Hartree-Fock-Bogoliubov theory at finite temperature for Bose gas trapped in the two-dimensional optical lattice with the on-site energy low enough that the gas presents superfluid properties. We obtain the condensate density as function of the temperature neglecting the anomalous density in the thermodynamics equation. The condensate fraction provides two critical temperature. Below the temperature TC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{C1}$\end{document}, there is one condensate fraction. Above two condensate fractions merger up to the critical temperature TC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{C2}$\end{document}. At temperatures larger than TC2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{C2}$\end{document}, the condensate fraction is null and, therefore, the gas is normal fluid. We resume by a finite-temperature phase diagram where three domains can be identified: the normal fluid, the superfluid with one stable condensate fraction and the superfluid with two condensate fractions being unstable one of them.
引用
收藏
页码:1 / 8
页数:7
相关论文
共 50 条
  • [21] Signatures of a universal jump in the superfluid density of a two-dimensional Bose gas with a finite number of particles
    Gawryluk, Krzysztof
    Brewczyk, Miroslaw
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [22] On the critical point of an interacting two-dimensional trapped Bose gas
    Simula, T. P.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (03): : 453 - 455
  • [23] On the critical point of an interacting two-dimensional trapped Bose gas
    T. P. Simula
    The European Physical Journal B, 2009, 68 : 453 - 455
  • [24] Quasicondensate and superfluid fraction in the two-dimensional charged boson gas at finite temperature
    Strepparola, E
    Minguzzi, A
    Tosi, MP
    PHYSICAL REVIEW B, 2001, 63 (10)
  • [25] Weakly interacting Bose gas in the vicinity of the normal-fluid-superfluid transition
    Prokof'ev, N
    Ruebenacker, O
    Svistunov, B
    PHYSICAL REVIEW A, 2004, 69 (05) : 053625 - 1
  • [26] Superfluid-insulator transition of two-dimensional disordered Bose gases
    Saliba, Joseph
    Lugan, Pierre
    Savona, Vincenzo
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [27] Phase Transition and Superfluid of Photons and Photon Pairs in a Two-Dimensional Optical Microcavity
    Zhang Jian-Jun
    Yuan Jian-Hui
    Zhang Jun-Pei
    Cheng Ze
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (05) : 672 - 680
  • [28] Phase Transition and Superfluid of Photons and Photon Pairs in a Two-Dimensional Optical Microcavity
    张建军
    袁建辉
    张俊佩
    成泽
    Communications in Theoretical Physics, 2012, 58 (11) : 672 - 680
  • [29] Superfluid phase transition in two-dimensional excitonic systems
    Apinyan, V.
    Kopec, T. K.
    PHYSICS LETTERS A, 2014, 378 (16-17) : 1185 - 1190
  • [30] Magnetic and superfluid phases of confined fermions in two-dimensional optical lattices
    Andersen, Brian M.
    Bruun, G. M.
    PHYSICAL REVIEW A, 2007, 76 (04):