Some monotonicity properties in F-normed Musielak–Orlicz spaces

被引:0
|
作者
Radosław Kaczmarek
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
[2] Poznań,undefined
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Musielak–Orlicz spaces; Mazur–Orlicz F-norm; F-normed Köthe spaces; Strict monotonicity; Orthogonal strict monotonicity; Lower local uniform monotonicity; Orthogonal lower local uniform monotonicity; Upper local uniform monotonicity; Orthogonal upper local uniform monotonicity; Primary 46E30; Secondary 46A80;
D O I
暂无
中图分类号
学科分类号
摘要
Strict monotonicity, lower local uniform monotonicity, upper local uniform monotonicity and their orthogonal counterparts are considered in the case of Musielak–Orlicz function spaces LΦ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\Phi (\mu )$$\end{document} endowed with the Mazur–Orlicz F-norm as well as in the case of their subspaces EΦ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^\Phi (\mu )$$\end{document} with the F-norm induced from LΦ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\Phi (\mu )$$\end{document}. The presented results generalize some of the results from Cui et al. (Aequ Math 93:311–343, 2019) and Hudzik et al. (J Nonlinear Convex Anal 17(10):1985–2011, 2016), obtained only for Orlicz spaces as well as their subspaces of order continuous elements equipped with the Mazur–Orlicz F-norm.
引用
收藏
页码:865 / 885
页数:20
相关论文
共 50 条
  • [41] Sobolev inequalities for Musielak–Orlicz spaces
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    manuscripta mathematica, 2018, 155 : 209 - 227
  • [42] The Musielak-Orlicz Herz spaces
    Dong, Baohua
    Li, Yu
    Xu, Jingshi
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 1287 - 1301
  • [43] ON COMPLETENESS OF MUSIELAK-ORLICZ SPACES
    WISLA, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1989, 10 (03) : 292 - 300
  • [44] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [45] Musielak-Orlicz Campanato Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 145 - 166
  • [46] Property (k-β) of Musielak-Orlicz and Musielak-Orlicz-Cesaro spaces
    Manna, Atanu
    Srivastava, P. D.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 471 - 486
  • [47] Some classes of sequence spaces defined by a Musielak-Orlicz function
    Sharma, Sunil K.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 494 - 505
  • [48] SEQUENCE SPACES OVER n-NORMED SPACES DEFINED BY MUSIELAK-ORLICZ FUNCTION OF ORDER (alpha, beta)
    Sharma, Sunil K.
    Mohiuddine, S. A.
    Sharma, Ajay K.
    Sharma, T. K.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (05): : 721 - 738
  • [49] ISOMETRIES OF MUSIELAK-ORLICZ SPACES EQUIPPED WITH THE ORLICZ NORM
    KAMINSKA, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) : 1475 - 1486
  • [50] Smoothness of the Orlicz norm in Musielak-Orlicz function spaces
    Vigelis, Rui F.
    Cavaleante, Charles C.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1025 - 1041