Property (k-β) of Musielak-Orlicz and Musielak-Orlicz-Cesaro spaces

被引:0
|
作者
Manna, Atanu [1 ]
Srivastava, P. D. [2 ]
机构
[1] Indian Inst Carpet Technol, Fac Math, Bhadohi 221401, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
(beta)-Property; Cesaro spaces; Difference spaces; Musielak-Orlicz spaces; GEOMETRIC-PROPERTIES; SEQUENCE;
D O I
10.1007/s13398-017-0489-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the geometric property (k-beta) for any fixed integer k1 of the space l phi((En)) generated by a Musielak-Orlicz function phi and a sequence (En) of finite dimensional spaces En, nN, equipped with both the Luxemburg and the Amemiya norms. As a consequence, we obtain the property (k-beta) of Musielak-Orlicz-Cesaro spaces ces phi using the approach recently considered by Saejung. Some applications to the Cesaro sequence spaces of order and Cesaro difference sequence spaces of order m are also noted.
引用
收藏
页码:471 / 486
页数:16
相关论文
共 50 条
  • [1] The Daugavet property in the Musielak-Orlicz spaces
    Kaminska, Anna
    Kubiak, Damian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 873 - 898
  • [2] UGD property of Musielak-Orlicz sequence spaces
    Wang, TF
    Ji, DH
    Cao, LY
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (02) : 196 - 207
  • [3] UGD PROPERTY OF MUSIELAK-ORLICZ SEQUENCE SPACES
    王廷辅
    计东海
    曹连英
    Applied Mathematics and Mechanics(English Edition), 2003, (02) : 196 - 207
  • [4] UGD property of Musielak-Orlicz sequence spaces
    Wang Ting-fu
    Ji Dong-hai
    Cao Lian-ying
    Applied Mathematics and Mechanics, 2003, 24 (2) : 196 - 207
  • [5] The Musielak-Orlicz Herz spaces
    Dong, Baohua
    Li, Yu
    Xu, Jingshi
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 1287 - 1301
  • [6] ON COMPLETENESS OF MUSIELAK-ORLICZ SPACES
    WISLA, M
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1989, 10 (03) : 292 - 300
  • [7] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [8] Musielak-Orlicz Campanato Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 145 - 166
  • [9] Smoothness of the Orlicz norm in Musielak-Orlicz function spaces
    Vigelis, Rui F.
    Cavaleante, Charles C.
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1025 - 1041
  • [10] ISOMETRIES OF MUSIELAK-ORLICZ SPACES EQUIPPED WITH THE ORLICZ NORM
    KAMINSKA, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) : 1475 - 1486