Neighbour-transitive codes and partial spreads in generalised quadrangles

被引:0
|
作者
Dean Crnković
Daniel R. Hawtin
Andrea Švob
机构
[1] University of Rijeka,Faculty of Mathematics
来源
关键词
Neighbour-transitive code; Generalised quadrangle; Partial spread; Partial ovoid; 94B25; 05E18; 51E12;
D O I
暂无
中图分类号
学科分类号
摘要
A code C in a generalised quadrangle Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} is defined to be a subset of the vertex set of the point-line incidence graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }$$\end{document} of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document}. The minimum distance δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} of C is the smallest distance between a pair of distinct elements of C. The graph metric gives rise to the distance partition {C,C1,…,Cρ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{C,C_1,\ldots ,C_\rho \}$$\end{document}, where ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is the maximum distance between any vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }$$\end{document} and its nearest element of C. Since the diameter of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }$$\end{document} is 4, both ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} are at most 4. If δ=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =4$$\end{document} then C is a partial ovoid or partial spread of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document}, and if, additionally, ρ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =2$$\end{document} then C is an ovoid or a spread. A code C in Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document} is neighbour-transitive if its automorphism group acts transitively on each of the sets C and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_1$$\end{document}. Our main results (i) classify all neighbour-transitive codes admitting an insoluble group of automorphisms in thick classical generalised quadrangles that correspond to ovoids or spreads, and (ii) give two infinite families and six sporadic examples of neighbour-transitive codes with minimum distance δ=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =4$$\end{document} in the classical generalised quadrangle W3(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {W}}_3(q)$$\end{document} that are not ovoids or spreads.
引用
收藏
页码:1521 / 1533
页数:12
相关论文
共 23 条
  • [1] Neighbour-transitive codes and partial spreads in generalised quadrangles
    Crnkovic, Dean
    Hawtin, Daniel R.
    Svob, Andrea
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (06) : 1521 - 1533
  • [2] Neighbour-transitive codes in Johnson graphs
    Robert A. Liebler
    Cheryl E. Praeger
    [J]. Designs, Codes and Cryptography, 2014, 73 : 1 - 25
  • [3] Neighbour-transitive codes in Kneser graphs
    Crnkovic, Dean
    Hawtin, Daniel R.
    Mostarac, Nina
    Svob, Andrea
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [4] Neighbour-transitive codes in Johnson graphs
    Liebler, Robert A.
    Praeger, Cheryl E.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) : 1 - 25
  • [5] Sporadic neighbour-transitive codes in Johnson graphs
    Neunhoeffer, Max
    Praeger, Cheryl E.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (01) : 141 - 152
  • [6] Sporadic neighbour-transitive codes in Johnson graphs
    Max Neunhöffer
    Cheryl E. Praeger
    [J]. Designs, Codes and Cryptography, 2014, 72 : 141 - 152
  • [7] Searching for maximal partial ovoids and spreads in generalized quadrangles
    Cimrakova, Miroslava
    Fack, Veerle
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 697 - 705
  • [8] Maximal partial ovoids and maximal partial spreads in hermitian generalized quadrangles
    Metsch, K.
    Storme, L.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (02) : 101 - 116
  • [9] Minimal binary 2-neighbour-transitive codes
    Hawtin, Daniel R.
    Praeger, Cheryl E.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
  • [10] Diagonally neighbour transitive codes and frequency permutation arrays
    Gillespie, Neil I.
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (03) : 733 - 747