Neighbour-transitive codes in Johnson graphs

被引:0
|
作者
Robert A. Liebler
Cheryl E. Praeger
机构
[1] The University of Western Australia,School of Mathematics and Statistics
[2] King Abdulaziz University,undefined
来源
关键词
Codes in graphs; Johnson graph; -Transitive permutation group; Neighbour-transitive; 05C25; 20B25; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
The Johnson graph J(v,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(v,k)$$\end{document} has, as vertices, the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-subsets of a v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}-set V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document} and as edges the pairs of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-subsets with intersection of size k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document}. We introduce the notion of a neighbour-transitive code in J(v,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(v,k)$$\end{document}. This is a proper vertex subset Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} such that the subgroup G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of graph automorphisms leaving Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} invariant is transitive on both the set Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of ‘codewords’ and also the set of ‘neighbours’ of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, which are the non-codewords joined by an edge to some codeword. We classify all examples where the group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a subgroup of the symmetric group Sym(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Sym}\,(\mathcal {V})$$\end{document} and is intransitive or imprimitive on the underlying v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document}-set V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document}. In the remaining case where G≤Sym(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\le \mathrm{Sym}\,(\mathcal {V})$$\end{document} and G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is primitive on V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document}, we prove that, provided distinct codewords are at distance at least 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}, then G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-transitive on V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document}. We examine many of the infinite families of finite 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-transitive permutation groups and construct surprisingly rich families of examples of neighbour-transitive codes. A major unresolved case remains.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 50 条
  • [1] Neighbour-transitive codes in Johnson graphs
    Liebler, Robert A.
    Praeger, Cheryl E.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) : 1 - 25
  • [2] Sporadic neighbour-transitive codes in Johnson graphs
    Neunhoeffer, Max
    Praeger, Cheryl E.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (01) : 141 - 152
  • [3] Sporadic neighbour-transitive codes in Johnson graphs
    Max Neunhöffer
    Cheryl E. Praeger
    [J]. Designs, Codes and Cryptography, 2014, 72 : 141 - 152
  • [4] Neighbour-transitive codes in Kneser graphs
    Crnkovic, Dean
    Hawtin, Daniel R.
    Mostarac, Nina
    Svob, Andrea
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [5] Neighbour-transitive codes and partial spreads in generalised quadrangles
    Crnkovic, Dean
    Hawtin, Daniel R.
    Svob, Andrea
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (06) : 1521 - 1533
  • [6] Neighbour-transitive codes and partial spreads in generalised quadrangles
    Dean Crnković
    Daniel R. Hawtin
    Andrea Švob
    [J]. Designs, Codes and Cryptography, 2022, 90 : 1521 - 1533
  • [7] COMPLETELY TRANSITIVE CODES AND DISTANCE TRANSITIVE GRAPHS
    RIFA, J
    PUJOL, J
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 539 : 360 - 367
  • [8] Minimal binary 2-neighbour-transitive codes
    Hawtin, Daniel R.
    Praeger, Cheryl E.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
  • [9] Diagonally neighbour transitive codes and frequency permutation arrays
    Gillespie, Neil I.
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (03) : 733 - 747
  • [10] Diagonally neighbour transitive codes and frequency permutation arrays
    Neil I. Gillespie
    Cheryl E. Praeger
    [J]. Journal of Algebraic Combinatorics, 2014, 39 : 733 - 747