On the spectrum of spatial Lyapunov exponents for a nonlinear active medium described by a complex Ginzburg-Landau equation

被引:0
|
作者
A. A. Koronovskiĭ
O. I. Moskalenko
N. S. Frolov
A. E. Hramov
机构
[1] Saratov State University,
来源
Technical Physics Letters | 2010年 / 36卷
关键词
Lyapunov Exponent; Technical Physic Letter; Landau Equation; Virtual Cathode; Chaotic Regime;
D O I
暂无
中图分类号
学科分类号
摘要
A new method is proposed for calculating the spectrum of Lyapunov exponents for spatially distributed systems. The proposed method is applied to a distributed nonlinear active medium described by a complex Ginzburg-Landau equation with periodic boundary conditions.
引用
收藏
页码:645 / 647
页数:2
相关论文
共 50 条
  • [21] Stabilization of pattern in complex Ginzburg-Landau equation with spatial perturbation scheme
    Ma Jun
    Yi Ming
    Zhang Li-Ping
    Jin Wu-Yin
    Li Yan-Long
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (06) : 1541 - 1546
  • [22] Discrete and periodic complex Ginzburg-Landau equation for a hydrodynamic active lattice
    Thomson, Stuart J.
    Durey, Matthew
    Rosales, Rodolfo R.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [23] COMPLEX GINZBURG-LANDAU EQUATION FOR NONLINEAR TRAVELING WAVES IN EXTRINSIC SEMICONDUCTORS
    CHRISTEN, T
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 97 (03): : 473 - 479
  • [24] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [25] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [26] HOMOCLINIC EXPLOSIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    LUCE, BP
    PHYSICA D, 1995, 84 (3-4): : 553 - 581
  • [27] Controlling turbulence in the complex Ginzburg-Landau equation
    Xiao, JH
    Hu, G
    Yang, JZ
    Gao, JH
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5552 - 5555
  • [28] Inviscid limits of the complex Ginzburg-Landau equation
    Bechouche, P
    Jüngel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) : 201 - 226
  • [29] Taming turbulence in the complex Ginzburg-Landau equation
    Zhan, Meng
    Zou, Wei
    Liu, Xu
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [30] Extensive properties of the complex Ginzburg-Landau equation
    Collet, P
    Eckmann, JP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 699 - 722