Taming turbulence in the complex Ginzburg-Landau equation

被引:3
|
作者
Zhan, Meng [1 ]
Zou, Wei [1 ,2 ]
Liu, Xu [1 ,2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 03期
关键词
SPATIOTEMPORAL CHAOS; PATTERNS; SYNCHRONIZATION; SYSTEMS; WAVES;
D O I
10.1103/PhysRevE.81.036211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Taming turbulence in the complex Ginzburg-Landau equation (CGLE) by using a global feedback control method and choosing traveling-wave solutions as our target state is investigated. The problem of optimal control for the smallest driving strength is studied by systematically comparing the stabilities of all traveling waves. Within the Benjamin-Feir-Newell unstable parameter region (c(2) < -c(1)(-1)), a critical control curve is determined, which is located at c(2) = alpha c(1)(beta), with alpha approximate to -4.0 and beta approximate to -0.87. It characterizes the transition of chosen traveling-wave target state from long wavelength to short one. This finding is of great significance for taming turbulence in the CGLE and some other spatiotemporal systems as well.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Controlling turbulence in the complex Ginzburg-Landau equation
    Xiao, JH
    Hu, G
    Yang, JZ
    Gao, JH
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5552 - 5555
  • [2] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    [J]. PHYSICAL REVIEW E, 2007, 76 (01):
  • [3] Controlling turbulence in the complex Ginzburg-Landau equation
    Battogtokh, D
    Mikhailov, A
    [J]. PHYSICA D, 1996, 90 (1-2): : 84 - 95
  • [4] STATISTICS AND STRUCTURES OF STRONG TURBULENCE IN A COMPLEX GINZBURG-LANDAU EQUATION
    IWASAKI, H
    TOH, S
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (05): : 1127 - 1137
  • [5] Conjectures about phase turbulence in the complex Ginzburg-Landau equation
    Grinstein, G
    Jayaprakash, C
    Pandit, R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1996, 90 (1-2) : 96 - 106
  • [6] ON THE POSSIBILITY OF SOFT AND HARD TURBULENCE IN THE COMPLEX GINZBURG-LANDAU EQUATION
    BARTUCCELLI, M
    CONSTANTIN, P
    DOERING, CR
    GIBBON, JD
    GISSELFALT, M
    [J]. PHYSICA D, 1990, 44 (03): : 421 - 444
  • [7] TURBULENCE IN THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION
    ZUBRZYCKI, A
    [J]. ACTA PHYSICA POLONICA A, 1995, 87 (06) : 925 - 932
  • [8] Wound-up phase turbulence in the complex Ginzburg-Landau equation
    Montagne, R
    HernandezGarcia, E
    Amengual, A
    SanMiguel, M
    [J]. PHYSICAL REVIEW E, 1997, 56 (01) : 151 - 167
  • [9] Phase turbulence in the two-dimensional complex Ginzburg-Landau equation
    Manneville, P
    Chate, H
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1996, 96 (1-4) : 30 - 46
  • [10] ON THE INVARIANTS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MAGEN, M
    ROSENAU, P
    [J]. PHYSICS LETTERS A, 1984, 104 (09) : 444 - 446