Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II

被引:0
|
作者
Sérgio C. Bezerra
Alberto Ohashi
Francesco Russo
Francys de Souza
机构
[1] Universidade Federal da Paraíba,Departamento de Computação Científica
[2] Rua dos Escoteiros,Departamento de Matemática
[3] Universidade de Brasília,ENSTA ParisTech
[4] Unité de Mathématiques Appliquées,Instituto de Matemática, Estatística e Computação Científica
[5] Universidade de Campinas,undefined
关键词
Optimal stopping; Stochastic optimal control; Monte Carlo methods; Primary: 93E20; Secondary: 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a Longstaff-Schwartz-type algorithm for optimal stopping time problems based on the Brownian motion filtration. The algorithm is based on Leão et al. (??2019) and, in contrast to previous works, our methodology applies to optimal stopping problems for fully non-Markovian and non-semimartingale state processes such as functionals of path-dependent stochastic differential equations and fractional Brownian motions. Based on statistical learning theory techniques, we provide overall error estimates in terms of concrete approximation architecture spaces with finite Vapnik-Chervonenkis dimension. Analytical properties of continuation values for path-dependent SDEs and concrete linear architecture approximating spaces are also discussed.
引用
收藏
页码:1221 / 1255
页数:34
相关论文
共 50 条
  • [1] Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II
    Bezerra, Sergio C.
    Ohashi, Alberto
    Russo, Francesco
    de Souza, Francys
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 1221 - 1255
  • [2] Discrete-type approximations for non-Markovian optimal stopping problems: Part I
    Leao, Dorival
    Ohashi, Alberto
    Russo, Francesco
    [J]. JOURNAL OF APPLIED PROBABILITY, 2019, 56 (04) : 981 - 1005
  • [3] Representation of non-Markovian optimal stopping problems by constrained BSDEs with a single jump
    Fuhrman, Marco
    Huyen Pham
    Zeni, Federica
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [4] Convergence Guarantees for Discrete Mode Approximations to Non-Markovian Quantum Baths
    Trivedi, Rahul
    Malz, Daniel
    Cirac, J. Ignacio
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (25)
  • [5] Phase-Type Approximations for Non-Markovian Systems: A Case Study
    Ciobanu, Gabriel
    Rotaru, Armand
    [J]. SOFTWARE ENGINEERING AND FORMAL METHODS, SEFM 2014, 2015, 8938 : 323 - 334
  • [6] Non-Markovian discrete qubit dynamics
    Jun Sun
    Yong-Nan Sun
    Chuan-Feng Li
    Guang-Can Guo
    Kimmo Luoma
    Jyrki Piilo
    [J]. Science Bulletin, 2016, 61 (13) : 1031 - 1036
  • [7] Non-Markovian discrete qubit dynamics
    Sun, Jun
    Sun, Yong-Nan
    Li, Chuan-Feng
    Guo, Guang-Can
    Luoma, Kimmo
    Piilo, Jyrki
    [J]. SCIENCE BULLETIN, 2016, 61 (13) : 1031 - 1036
  • [8] Non-Markovian Optimal Sideband Cooling
    Triana, Johan F.
    Pachona, Leonardo A.
    [J]. LATIN AMERICAN SCHOOL OF PHYSICS MARCOS MOSHINSKY (ELAF2017) - QUANTUM CORRELATIONS, 2018, 1950
  • [9] Weak-coupling approximations in non-Markovian transport
    Zedler, Philipp
    Schaller, Gernot
    Kiesslich, Gerold
    Emary, Clive
    Brandes, Tobias
    [J]. PHYSICAL REVIEW B, 2009, 80 (04):
  • [10] Optimal management of non-Markovian biological populations
    Williams, Byron K.
    [J]. ECOLOGICAL MODELLING, 2007, 200 (1-2) : 234 - 242